IDEAS home Printed from https://ideas.repec.org/p/ags/aaea12/124745.html
   My bibliography  Save this paper

Ex Ante Impact Assessment of a Drought Tolerant Rice Variety in the Presence of Climate Change

Author

Listed:
  • Mottaleb, Khondoker A.
  • Rejesus, Roderick M.
  • Mohanty, Samarendu
  • Murty, M.V.R.
  • Li, Tao
  • Valera, Harold Glenn
  • Gumma, Murali Krishna

Abstract

Rice productivity and sustainability are continually threatened by abiotic stresses, particularly in the era of global climate change. In severe cases, 100% yield loss can be experienced due solely to abiotic stresses, such as drought. The situation may become worse due to climate change that may multiply the frequency and severity of such abiotic stresses. Hence, there is an urgent need to develop improved varieties that are more resilient to abiotic stresses. This study examines the net economic benefit and potential economic impacts of developing and disseminating a drought tolerant rice variety in South Asia. Drought is one of the most destructive abiotic stresses that not only causes major rice yield losses in South Asia, but also in other parts of Asia and Africa. Using the ORYZA2000 crop simulation model, we demonstrate that the new variety can provide yield gains in South Asia both when there is no change in the climate and also under the different climate scenarios projected by CGCM climate model. Moreover, our economic surplus analysis shows that the economic benefits from the successful development and dissemination of a drought tolerant variety more than outweigh the research investments needed to develop the variety. The partial equilibrium models we used also indicate that rice production is higher and rice prices are lower when a drought tolerant variety is adopted in South Asia (as compared to the case without this new variety). This in turn can lead to more sustainable rice production, improved food security, and better nutritional outcomes for the poor.

Suggested Citation

  • Mottaleb, Khondoker A. & Rejesus, Roderick M. & Mohanty, Samarendu & Murty, M.V.R. & Li, Tao & Valera, Harold Glenn & Gumma, Murali Krishna, 2012. "Ex Ante Impact Assessment of a Drought Tolerant Rice Variety in the Presence of Climate Change," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124745, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea12:124745
    DOI: 10.22004/ag.econ.124745
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/124745/files/MottalebRev.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.124745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pandey, S. & Bhandari, H. & Hardy, B., 2007. "Economic Costs of Drought and Rice Farmers’ Coping Mechanisms: A Cross-Country Comparative Analysis," IRRI Books, International Rice Research Institute (IRRI), number 281814.
    2. Vida-Lina Esperanza B. Alpuerto & George W. Norton & Jeffrey Alwang & Abdelbagi M. Ismail, 2009. "Economic Impact Analysis of Marker-Assisted Breeding for Tolerance to Salinity and Phosphorous Deficiency in Rice," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 31(4), pages 779-792, December.
    3. Tonini, Axel & Cabrera, Ellanie, 2011. "Opportunities for Global Rice Research in a Changing World," IRRI Technical Bulletins 287644, International Rice Research Institute (IRRI).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arora, Anchal & Bansal, Sangeeta & Ward, Patrick S., 2015. "Eliciting farmers’ valuation for abiotic stress-tolerant rice in India:," IFPRI discussion papers 1409, International Food Policy Research Institute (IFPRI).
    2. Arora, Anchal & Bansal, Sangeeta & Ward, Patrick S., 2015. "Do farmers value rice varieties tolerant to droughts and floods? Evidence from a discrete choice experiment in Odisha, India," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 204881, Agricultural and Applied Economics Association.
    3. Kotu, Bekele & Admassie, Assefa, 2015. "Potential impact of improved varieties on poverty reduction: a case study of selected cereal crops in two districts of Ethiopia," 2015 Conference, August 9-14, 2015, Milan, Italy 212013, International Association of Agricultural Economists.
    4. repec:oup:apecpp:v:40:y:2018:i:3:p:402-420. is not listed on IDEAS
    5. Birthal, Pratap S. & Negi, Digvijay S. & Khan, Md. Tajuddin & Agarwal, Shaily, 2015. "Is Indian agriculture becoming resilient to droughts? Evidence from rice production systems," Food Policy, Elsevier, vol. 56(C), pages 1-12.
    6. Birthal, Pratap S., 2013. "Application of Frontier Technologies for Agricultural Development," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 68(1), pages 1-19.
    7. Hansen, James & Hellin, Jon & Rosenstock, Todd & Fisher, Eleanor & Cairns, Jill & Stirling, Clare & Lamanna, Christine & van Etten, Jacob & Rose, Alison & Campbell, Bruce, 2019. "Climate risk management and rural poverty reduction," Agricultural Systems, Elsevier, vol. 172(C), pages 28-46.
    8. Ward, Patrick S. & Ortega, David L. & Spielman, David J. & Singh, Vartika, 2013. "Farmer preferences for drought tolerance in hybrid versus inbred rice: Evidence from Bihar, India:," IFPRI discussion papers 1307, International Food Policy Research Institute (IFPRI).
    9. Birthal, P.S. & Khan, T.M. & Negi, D.S. & Agarwal, S., 2014. "Impact of Climate Change on Yields of Major Food Crops in India: Implications for Food Security," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 27(2).
    10. Hoang, Hoa K. & Meyers, William H., 2015. "Price stabilization and impacts of trade liberalization in the Southeast Asian rice market," Food Policy, Elsevier, vol. 57(C), pages 26-39.
    11. Ward, Patrick S. & Ortega, David L. & Spielman, David J. & Singh, Vartika, 2014. "Heterogeneous Demand for Drought-Tolerant Rice: Evidence from Bihar, India," World Development, Elsevier, vol. 64(C), pages 125-139.
    12. Ward, Patrick S. & Ortega, David L. & Spielman, David J. & Singh, Vartika & Magnan, Nicholas, 2013. "Farmer Preferences for Abiotic Stress Tolerance in Hybrid versus Inbred Rice: Evidence from Bihar, India," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150786, Agricultural and Applied Economics Association.
    13. Zentner, Emilie, 2015. "Rice Biotechnology: Helping or Hurting Farmers in the Philippines," SS-AAEA Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 2015, pages 1-13.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khondoker A. Mottaleb & Roderick M. Rejesus & MVR Murty & Samarendu Mohanty & Tao Li, 2017. "Benefits of the development and dissemination of climate-smart rice: ex ante impact assessment of drought-tolerant rice in South Asia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(6), pages 879-901, August.
    2. Birthal, Pratap Singh & Nigam, Shyam N. & Narayanan, A.V. & Kareem, K.A., 2012. "Potential Economic Benefits from Adoption of Improved Drought-tolerant Groundnut in India," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 25(1), June.
    3. L. Paleari & G. Cappelli & S. Bregaglio & M. Acutis & M. Donatelli & G. Sacchi & E. Lupotto & M. Boschetti & G. Manfron & R. Confalonieri, 2015. "District specific, in silico evaluation of rice ideotypes improved for resistance/tolerance traits to biotic and abiotic stressors under climate change scenarios," Climatic Change, Springer, vol. 132(4), pages 661-675, October.
    4. Naseem, Anwar & Singla, Rohit, 2013. "Ex Ante Economic Impact Analysis of Novel Traits in Canola," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 38(2), pages 1-21, August.
    5. Nathan Sunday & Rehema Kahunde & Blessing Atwine & Adesoji Adelaja & Justin George, 2023. "How specific resilience pillars mitigate the impact of drought on food security: Evidence from Uganda," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 15(1), pages 111-131, February.
    6. Ward, Patrick S. & Spielman, David J. & Ortega, David L. & Kumar, Neha & Minocha, Sumedha, 2015. "Demand for Complementary Financial and Technological Tools for Managing Drought Risk: Evidence from Rice Farmers in Bangladesh," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 204882, Agricultural and Applied Economics Association.
    7. Birthal, P.S. & Khan, T.M. & Negi, D.S. & Agarwal, S., 2014. "Impact of Climate Change on Yields of Major Food Crops in India: Implications for Food Security," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 27(2).
    8. De Silva, M.M.G.T. & Kawasaki, Akiyuki, 2018. "Socioeconomic Vulnerability to Disaster Risk: A Case Study of Flood and Drought Impact in a Rural Sri Lankan Community," Ecological Economics, Elsevier, vol. 152(C), pages 131-140.
    9. Madhusudan Ghosh, 2019. "Climate-smart Agriculture, Productivity and Food Security in India," Journal of Development Policy and Practice, , vol. 4(2), pages 166-187, July.
    10. Jose M. Yorobe Jr. & Jauhar Ali & Valerien O. Pede & Roderick M. Rejesus & Orlee. P. Velarde & Huaiyu Wang, 2016. "Yield and income effects of rice varieties with tolerance of multiple abiotic stresses: the case of green super rice (GSR) and flooding in the Philippines," Agricultural Economics, International Association of Agricultural Economists, vol. 47(3), pages 261-271, May.
    11. Amrita Chatterjee & Arpita Ghose, 2016. "A dynamic economic model of soil conservation and drought tolerance involving genetically modified crops," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 18(1), pages 40-66, October.
    12. Ward, Patrick S. & Ortega, David L. & Spielman, David J. & Singh, Vartika, 2013. "Farmer preferences for drought tolerance in hybrid versus inbred rice: Evidence from Bihar, India:," IFPRI discussion papers 1307, International Food Policy Research Institute (IFPRI).
    13. Birthal, Pratap S. & Hazrana, Jaweriah, 2019. "Crop diversification and resilience of agriculture to climatic shocks: Evidence from India," Agricultural Systems, Elsevier, vol. 173(C), pages 345-354.
    14. Patrick S. Ward & David L. Ortega & David J. Spielman & Neha Kumar & Sumedha Minocha, 2020. "Demand for Complementary Financial and Technological Tools for Managing Drought Risk," Economic Development and Cultural Change, University of Chicago Press, vol. 68(2), pages 607-653.
    15. Fontes, Francisco & Gorst, Ashley & Palmer, Charles, 2020. "Does choice of drought index influence estimates of drought-induced rice losses in India?," Environment and Development Economics, Cambridge University Press, vol. 25(5), pages 459-481, October.
    16. Kumar, Shalander & Craufurd, Peter & Haileslassie, Amare & Ramilan, Thiagarajah & Rathore, Abhishek & Whitbread, Anthony, 2019. "Farm typology analysis and technology assessment: An application in an arid region of South Asia," Land Use Policy, Elsevier, vol. 88(C).
    17. Bert Lenaerts & Yann de Mey & Matty Demont, 2018. "Global impact of accelerated plant breeding: Evidence from a meta-analysis on rice breeding," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-21, June.
    18. Mottaleb, Khandoker & Khanal, Aditya R. & Mishra, Ashok & Mohanty, Samrendu, 2014. "Rice Farmers’ Production Efficiency under Abiotic Stresses: the Case of Bangladesh," 2014 Annual Meeting, February 1-4, 2014, Dallas, Texas 162543, Southern Agricultural Economics Association.
    19. Aditi Bhandari & Jérôme Bartholomé & Tuong-Vi Cao-Hamadoun & Nilima Kumari & Julien Frouin & Arvind Kumar & Nourollah Ahmadi, 2019. "Selection of trait-specific markers and multi-environment models improve genomic predictive ability in rice," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-21, May.
    20. Muhammad Ashraf & Jayant Routray & Muhammad Saeed, 2014. "Determinants of farmers’ choice of coping and adaptation measures to the drought hazard in northwest Balochistan, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1451-1473, September.

    More about this item

    Keywords

    Crop Production/Industries; Environmental Economics and Policy; Food Security and Poverty;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea12:124745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.