Advanced Search
MyIDEAS: Login

Edgeworth Corrections for Realized Volatility


Author Info

  • Silvia Goncalves
  • Nour Meddahi


The quality of the asymptotic normality of realized volatility can be poor if sampling does not occur at very high frequencies. In this article we consider an alternative approximation to the finite sample distribution of realized volatility based on Edgeworth expansions. In particular, we show how confidence intervals for integrated volatility can be constructed using these Edgeworth expansions. The Monte Carlo study we conduct shows that the intervals based on the Edgeworth corrections have improved properties relatively to the conventional intervals based on the normal approximation. Contrary to the bootstrap, the Edgeworth approach is an analytical approach that is easily implemented, without requiring any resampling of one's data. A comparison between the bootstrap and the Edgeworth expansion shows that the bootstrap outperforms the Edgeworth corrected intervals. Thus, if we are willing to incur in the additional computational cost involved in computing bootstrap intervals, these are preferred over the Edgeworth intervals. Nevertheless, if we are not willing to incur in this additional cost, our results suggest that Edgeworth corrected intervals should replace the conventional intervals based on the first order normal approximation.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Taylor & Francis Journals in its journal Econometric Reviews.

Volume (Year): 27 (2008)
Issue (Month): 1-3 ()
Pages: 139-162

as in new window
Handle: RePEc:taf:emetrv:v:27:y:2008:i:1-3:p:139-162

Contact details of provider:
Web page:

Order Information:

Related research

Keywords: Confidence intervals; Edgeworth expansions; Realized volatility;


No references listed on IDEAS
You can help add them by filling out this form.


Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Zhang, Lan & Mykland, Per A. & Aït-Sahalia, Yacine, 2011. "Edgeworth expansions for realized volatility and related estimators," Journal of Econometrics, Elsevier, vol. 160(1), pages 190-203, January.
  2. Dovonon, Prosper & Gonçalves, Sílvia & Meddahi, Nour, 2013. "Bootstrapping realized multivariate volatility measures," Journal of Econometrics, Elsevier, vol. 172(1), pages 49-65.


This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


Access and download statistics


When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:27:y:2008:i:1-3:p:139-162. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.