Advanced Search
MyIDEAS: Login to save this article or follow this journal

Asymptotic Distributions Of Seasonal Unit Root Tests: A Unifying Approach

Contents:

Author Info

  • Denise Osborn
  • Paulo Rodrigues

Abstract

This paper adopts a unified approach to the derivation of the asymptotic distributions of various seasonal unit root tests. The procedures considered are those of Dickey et al. [DHF], Kunst, Hylleberg et al. [HEGY], Osborn et al. [OCSB], Ghysels et al. [GHL] and Franses. This unified approach shows that the asymptotic distributions of all these test statistics are functions of the same vector of Brownian motions. The Kunst test and the overall HEGY F-test are, indeed, equivalent both asymptotically and in finite samples, while the Franses and GHL tests are shown to have equivalent parameterizations. The OCSB and DHF test regressions are viewed as restricted forms of the Kunst-HEGY regressions, and these restrictions may have non-trivial asymptotic implications.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.tandfonline.com/doi/abs/10.1081/ETC-120014350
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Taylor & Francis Journals in its journal Econometric Reviews.

Volume (Year): 21 (2002)
Issue (Month): 2 ()
Pages: 221-241

as in new window
Handle: RePEc:taf:emetrv:v:21:y:2002:i:2:p:221-241

Contact details of provider:
Web page: http://www.tandfonline.com/LECR20

Order Information:
Web: http://www.tandfonline.com/pricing/journal/LECR20

Related research

Keywords: Seasonal unit roots; Asymptotic distributions; Unit root tests; Brownian motions; JEL Classification ; C12; C22;

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
  2. Franses, Philip Hans, 1991. "Seasonality, non-stationarity and the forecasting of monthly time series," International Journal of Forecasting, Elsevier, vol. 7(2), pages 199-208, August.
  3. Ghysels, E. & Hall, A. & Lee, H.S., 1995. "On Periodic Structures and Testing for Seasonal Unit Roots," Cahiers de recherche 9518, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  4. Smith, Richard J. & Taylor, A. M. Robert, 1998. "Additional critical values and asymptotic representations for seasonal unit root tests," Journal of Econometrics, Elsevier, vol. 85(2), pages 269-288, August.
  5. Dickey, David A., 1993. "Seasonal unit roots in aggregate U.S. data," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 329-331.
  6. Ghysels, Eric & Lee, Hahn S. & Noh, Jaesum, 1994. "Testing for unit roots in seasonal time series : Some theoretical extensions and a Monte Carlo investigation," Journal of Econometrics, Elsevier, vol. 62(2), pages 415-442, June.
  7. Franses, Philip Hans, 1994. "A multivariate approach to modeling univariate seasonal time series," Journal of Econometrics, Elsevier, vol. 63(1), pages 133-151, July.
  8. Peter C.B. Phillips, 1985. "Understanding Spurious Regressions in Econometrics," Cowles Foundation Discussion Papers 757, Cowles Foundation for Research in Economics, Yale University.
  9. Osborn, Denise R, et al, 1988. "Seasonality and the Order of Integration for Consumption," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 50(4), pages 361-77, November.
  10. Phillips, P C B & Durlauf, S N, 1986. "Multiple Time Series Regression with Integrated Processes," Review of Economic Studies, Wiley Blackwell, vol. 53(4), pages 473-95, August.
  11. Joseph Beaulieu, J. & Miron, Jeffrey A., 1993. "Seasonal unit roots in aggregate U.S. data," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 305-328.
  12. Philip Hans Franses & Bart Hobijn, 1997. "Critical values for unit root tests in seasonal time series," Journal of Applied Statistics, Taylor & Francis Journals, vol. 24(1), pages 25-48.
  13. Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521565882, April.
  14. Smith, Richard J. & Taylor, A.M. Robert & del Barrio Castro, Tomas, 2009. "Regression-Based Seasonal Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 25(02), pages 527-560, April.
  15. Hylleberg, Svend, 1995. "Tests for seasonal unit roots general to specific or specific to general?," Journal of Econometrics, Elsevier, vol. 69(1), pages 5-25, September.
  16. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
  17. Paulo Rodrigues & Denise Osborn, 1999. "Performance of seasonal unit root tests for monthly data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(8), pages 985-1004.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Tomas del Barrio Castro, 2007. "Using the HEGY Procedure When Not All Roots Are Present," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(6), pages 910-922, November.
  2. Eric Ghysels & Denise R. Osborn & Paulo M. M. Rodrigues, 1999. "Seasonal Nonstationarity and Near-Nonstationarity," CIRANO Working Papers 99s-05, CIRANO.
  3. Haldrup, Niels Prof. & Montanes, Antonio & Sansó, Andreu, 2000. "Measurement Errors and Outliers in Seasonal Unit Root Testing," University of California at San Diego, Economics Working Paper Series qt0gw7q9hk, Department of Economics, UC San Diego.
  4. Rodrigues, Paulo M. M., 2000. "A note on the application of the DF test to seasonal data," Statistics & Probability Letters, Elsevier, vol. 47(2), pages 171-175, April.
  5. da Silva Lopes, Artur C. B., 2001. "The robustness of tests for seasonal differencing to structural breaks," Economics Letters, Elsevier, vol. 71(2), pages 173-179, May.
  6. Uwe Hassler & Paulo M. M. Rodrigues, 2004. "Seasonal Unit Root Tests Under Structural Breaks," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(1), pages 33-53, 01.
  7. Rodrigues, Paulo M. M. & Taylor, A. M. Robert, 2004. "Alternative estimators and unit root tests for seasonal autoregressive processes," Journal of Econometrics, Elsevier, vol. 120(1), pages 35-73, May.
  8. Norman Swanson & Richard Urbach, 2013. "Prediction and Simulation Using Simple Models Characterized by Nonstationarity and Seasonality," Departmental Working Papers 201323, Rutgers University, Department of Economics.
  9. del Barrio Castro, Tomas, 2006. "On the performance of the DHF tests against nonstationary alternatives," Statistics & Probability Letters, Elsevier, vol. 76(3), pages 291-297, February.
  10. Sandra G. Feltham & David E.A. Giles, 1999. "Testing for Unit Roots in Semi-Annual Data," Econometrics Working Papers 9912, Department of Economics, University of Victoria.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:21:y:2002:i:2:p:221-241. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.