Advanced Search
MyIDEAS: Login

Using the HEGY Procedure When Not All Roots Are Present

Contents:

Author Info

  • Tomas del Barrio Castro

    (Universitat de Barcelona)

Abstract

Empirical studies have shown little evidence to support the presence of all unit roots present in the filter in quarterly seasonal time series. This paper analyses the performance of the Hylleberg, Engle, Granger and Yoo (1990) (HEGY) procedure when the roots under the null are not all present. We exploit the Vector of Quarters representation and cointegration relationship between the quarters when factors 4 (1 L),(1+ L), (1+ L2 ), (1 L2 ) and (1+ L + L2 + L3 ) are a source of nonstationarity in a process in order to obtain the distribution of tests of the HEGY procedure when the underlying processes have a root at the zero, Nyquist frequency, two complex conjugates of frequency / 2 and two combinations of the previous cases. We show both theoretically and through a Monte-Carlo analysis that the t-ratios and and the F-type tests used in the HEGY procedure have the same distribution as under the null of a seasonal random walk when the root(s) is/are present, although this is not the case for the t-ratio tests associated with unit roots at frequency 1 t 2 t / 2 .

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.ere.ub.es/dtreball/E07170.rdf/at_download/file
Download Restriction: no

Bibliographic Info

Paper provided by Universitat de Barcelona. Espai de Recerca en Economia in its series Working Papers in Economics with number 170.

as in new window
Length: 31 pages
Date of creation: 2007
Date of revision:
Handle: RePEc:bar:bedcje:2007170

Contact details of provider:
Postal: Espai de Recerca en Economia, Facultat de Ciències Econòmiques. Tinent Coronel Valenzuela, Num 1-11 08034 Barcelona. Spain.
Web page: http://www.ere.ub.es
More information through EDIRC

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Hyllerberg, S. & Engle, R.F. & Granger, C.W.J. & Yoo, B.S., 1988. "Seasonal Integration And Cointegration," Papers 0-88-2, Pennsylvania State - Department of Economics.
  2. Osborn, Denise R., 1993. "Seasonal cointegration," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 299-303.
  3. Taylor, A.M. Robert, 2003. "On The Asymptotic Properties Of Some Seasonal Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 19(02), pages 311-321, April.
  4. Ghysels, Eric & Lee, Hahn S. & Noh, Jaesum, 1994. "Testing for unit roots in seasonal time series : Some theoretical extensions and a Monte Carlo investigation," Journal of Econometrics, Elsevier, vol. 62(2), pages 415-442, June.
  5. Richard J. Smith & A. M. Robert Taylor & Tomas del Barrio Castro, 2007. "Regression-based seasonal unit root tests," Discussion Papers 07/05, University of Nottingham, Granger Centre for Time Series Econometrics.
  6. Hylleberg, Svend & Jorgensen, Clara & Sorensen, Nils Karl, 1993. "Seasonality in Macroeconomic Time Series," Empirical Economics, Springer, vol. 18(2), pages 321-35.
  7. Rodrigues, Paulo M. M. & Taylor, A. M. Robert, 2004. "Alternative estimators and unit root tests for seasonal autoregressive processes," Journal of Econometrics, Elsevier, vol. 120(1), pages 35-73, May.
  8. Smith, R.J. & Taylor, R., 1995. "Additional Critical Values and Asymptotic Representations for Seasonal Unit Roots Tests," Cambridge Working Papers in Economics 9529, Faculty of Economics, University of Cambridge.
  9. Phillips, Peter C B & Ouliaris, S, 1990. "Asymptotic Properties of Residual Based Tests for Cointegration," Econometrica, Econometric Society, vol. 58(1), pages 165-93, January.
  10. Burridge, Peter & Taylor, A M Robert, 2001. "On the Properties of Regression-Based Tests for Seasonal Unit Roots in the Presence of Higher-Order Serial Correlation," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 374-79, July.
  11. Denise Osborn & Paulo Rodrigues, 2002. "Asymptotic Distributions Of Seasonal Unit Root Tests: A Unifying Approach," Econometric Reviews, Taylor & Francis Journals, vol. 21(2), pages 221-241.
  12. Castro, Tomas del Barrio & Osborn, Denise R., 2008. "Testing For Seasonal Unit Roots In Periodic Integrated Autoregressive Processes," Econometric Theory, Cambridge University Press, vol. 24(04), pages 1093-1129, August.
  13. Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521565882, October.
  14. Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2004. "Asymptotic Distributions For Regression-Based Seasonal Unit Root Test Statistics In A Near-Integrated Model," Econometric Theory, Cambridge University Press, vol. 20(04), pages 645-670, August.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Ghassen El Montasser, 2011. "The overall seasonal integration tests under non-stationary alternatives: A methodological note," EERI Research Paper Series EERI_RP_2011_06, Economics and Econometrics Research Institute (EERI), Brussels.
  2. Tomás Del Barrio Castro & Denise R. Osborn, 2011. "HEGY Tests in the Presence of Moving Averages," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 691-704, October.
  3. Ghassen El Montasser, 2011. "The overall seasonal integration tests under non-stationary alternatives," Journal of Economics and Econometrics, Economics and Econometrics Research Institute (EERI), Brussels, vol. 54(1), pages 24-39.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:bar:bedcje:2007170. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Espai de Recerca en Economia).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.