IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v22y2019i1d10.1007_s10951-017-0549-6.html
   My bibliography  Save this article

A unified heuristic and an annotated bibliography for a large class of earliness–tardiness scheduling problems

Author

Listed:
  • Arthur Kramer

    (Universidade Federal da Paraíba
    Università degli Studi di Modena e Reggio Emilia)

  • Anand Subramanian

    (Universidade Federal da Paraíba)

Abstract

This work proposes a unified heuristic algorithm for a large class of earliness–tardiness (E–T) scheduling problems. We consider single/parallel machine E–T problems that may or may not consider some additional features such as idle time, setup times and release dates. In addition, we also consider those problems whose objective is to minimize either the total (average) weighted completion time or the total (average) weighted flow time, which arise as particular cases when the due dates of all jobs are either set to zero or to their associated release dates, respectively. The developed local search-based metaheuristic framework is quite simple, but at the same time relies on sophisticated procedures for efficiently performing local search according to the characteristics of the problem. We present efficient move evaluation approaches for some parallel machine problems that generalize the existing ones for single machine problems. The algorithm was tested in thousands of instances of several E–T problems and particular cases. The results obtained show that our unified heuristic is capable of producing high-quality solutions when compared to the best ones available in the literature that were obtained by specific methods. Moreover, we provide an extensive annotated bibliography on the problems related to those considered in this work, where we not only indicate the approach(es) used in each publication, but we also point out the characteristics of the problem(s) considered. Beyond that, we classify the existing methods in different categories so as to have a better idea of the popularity of each type of solution procedure.

Suggested Citation

  • Arthur Kramer & Anand Subramanian, 2019. "A unified heuristic and an annotated bibliography for a large class of earliness–tardiness scheduling problems," Journal of Scheduling, Springer, vol. 22(1), pages 21-57, February.
  • Handle: RePEc:spr:jsched:v:22:y:2019:i:1:d:10.1007_s10951-017-0549-6
    DOI: 10.1007/s10951-017-0549-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-017-0549-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-017-0549-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Biskup, Dirk & Herrmann, Jan & Gupta, Jatinder N.D., 2008. "Scheduling identical parallel machines to minimize total tardiness," International Journal of Production Economics, Elsevier, vol. 115(1), pages 134-142, September.
    2. DYER, Martin E. & WOLSEY, Laurence A., 1990. "Formulating the single machine sequencing problem with release dates as a mixed integer program," LIDAM Reprints CORE 878, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Ropke, Stefan & Pisinger, David, 2006. "A unified heuristic for a large class of Vehicle Routing Problems with Backhauls," European Journal of Operational Research, Elsevier, vol. 171(3), pages 750-775, June.
    4. Raman, Narayan & Rachamadugu, Ram V. & Talbot, F. Brian, 1989. "Real-time scheduling of an automated manufacturing center," European Journal of Operational Research, Elsevier, vol. 40(2), pages 222-242, May.
    5. Eva Vallada & Rubén Ruiz, 2012. "Scheduling Unrelated Parallel Machines with Sequence Dependent Setup Times and Weighted Earliness–Tardiness Minimization," Springer Optimization and Its Applications, in: Roger Z. Ríos-Mercado & Yasmín A. Ríos-Solís (ed.), Just-in-Time Systems, chapter 0, pages 67-90, Springer.
    6. T. Ibaraki & S. Imahori & M. Kubo & T. Masuda & T. Uno & M. Yagiura, 2005. "Effective Local Search Algorithms for Routing and Scheduling Problems with General Time-Window Constraints," Transportation Science, INFORMS, vol. 39(2), pages 206-232, May.
    7. Azizoglu, Meral & Kirca, Omer, 1998. "Tardiness minimization on parallel machines," International Journal of Production Economics, Elsevier, vol. 55(2), pages 163-168, July.
    8. Richard K. Congram & Chris N. Potts & Steef L. van de Velde, 2002. "An Iterated Dynasearch Algorithm for the Single-Machine Total Weighted Tardiness Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 14(1), pages 52-67, February.
    9. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2014. "A unified solution framework for multi-attribute vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 658-673.
    10. Yano, Candace Arai & Kim, Yeong-Dae, 1991. "Algorithms for a class of single-machine weighted tardiness and earliness problems," European Journal of Operational Research, Elsevier, vol. 52(2), pages 167-178, May.
    11. Kedad-Sidhoum, Safia & Solis, Yasmin Rios & Sourd, Francis, 2008. "Lower bounds for the earliness-tardiness scheduling problem on parallel machines with distinct due dates," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1305-1316, September.
    12. Scott Webster, 1992. "New Bounds for the Identical Parallel Processor Weighted Flow Time Problem," Management Science, INFORMS, vol. 38(1), pages 124-136, January.
    13. Azizoglu, Meral & Kirca, Omer, 1999. "On the minimization of total weighted flow time with identical and uniform parallel machines," European Journal of Operational Research, Elsevier, vol. 113(1), pages 91-100, February.
    14. Yalaoui, Farouk & Chu, Chengbin, 2002. "Parallel machine scheduling to minimize total tardiness," International Journal of Production Economics, Elsevier, vol. 76(3), pages 265-279, April.
    15. S H Yoon & I S Lee, 2011. "New constructive heuristics for the total weighted tardiness problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 232-237, January.
    16. George Li, 1997. "Single machine earliness and tardiness scheduling," European Journal of Operational Research, Elsevier, vol. 96(3), pages 546-558, February.
    17. Kenneth R. Baker & Gary D. Scudder, 1990. "Sequencing with Earliness and Tardiness Penalties: A Review," Operations Research, INFORMS, vol. 38(1), pages 22-36, February.
    18. Leyvand, Yaron & Shabtay, Dvir & Steiner, George, 2010. "A unified approach for scheduling with convex resource consumption functions using positional penalties," European Journal of Operational Research, Elsevier, vol. 206(2), pages 301-312, October.
    19. Lee, Young Hoon & Pinedo, Michael, 1997. "Scheduling jobs on parallel machines with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 100(3), pages 464-474, August.
    20. Yalaoui, F. & Chu, C., 2006. "New exact method to solve the Pm/rj/[summation operator]Cj schedule problem," International Journal of Production Economics, Elsevier, vol. 100(1), pages 168-179, March.
    21. Webster, Scott, 1995. "Weighted flow time bounds for scheduling identical processors," European Journal of Operational Research, Elsevier, vol. 80(1), pages 103-111, January.
    22. C Gagné & M Gravel & W L Price, 2005. "Using metaheuristic compromise programming for the solution of multiple-objective scheduling problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(6), pages 687-698, June.
    23. Della Croce, Federico, 1995. "Generalized pairwise interchanges and machine scheduling," European Journal of Operational Research, Elsevier, vol. 83(2), pages 310-319, June.
    24. Webster, S. T., 1993. "A priority rule for minimizing weighted flow time in a class of parallel machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 70(3), pages 327-334, November.
    25. Chengbin Chu, 1992. "A branch‐and‐bound algorithm to minimize total tardiness with different release dates," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(2), pages 265-283, March.
    26. Armentano, Vinicius Amaral & de Franca Filho, Moacir Felizardo, 2007. "Minimizing total tardiness in parallel machine scheduling with setup times: An adaptive memory-based GRASP approach," European Journal of Operational Research, Elsevier, vol. 183(1), pages 100-114, November.
    27. Francis Sourd, 2009. "New Exact Algorithms for One-Machine Earliness-Tardiness Scheduling," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 167-175, February.
    28. Halil Şen & Kerem Bülbül, 2015. "A Strong Preemptive Relaxation for Weighted Tardiness and Earliness/Tardiness Problems on Unrelated Parallel Machines," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 135-150, February.
    29. Philippe Baptiste & Antoine Jouglet & David Savourey, 2008. "Lower bounds for parallel machine scheduling problems," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 3(6), pages 643-664.
    30. Guanlong Deng & Xingsheng Gu, 2014. "An iterated greedy algorithm for the single-machine total weighted tardiness problem with sequence-dependent setup times," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(3), pages 351-362.
    31. C Gagné & W L Price & M Gravel, 2002. "Comparing an ACO algorithm with other heuristics for the single machine scheduling problem with sequence-dependent setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(8), pages 895-906, August.
    32. Pasquale Avella & Maurizio Boccia & Bernardo D’Auria, 2005. "Near-Optimal Solutions of Large-Scale Single-Machine Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 17(2), pages 183-191, May.
    33. A Subramanian & M Battarra, 2013. "An iterated local search algorithm for the Travelling Salesman Problem with Pickups and Deliveries," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(3), pages 402-409, March.
    34. Tan, K. C. & Narasimhan, R., 1997. "Minimizing tardiness on a single processor with sequence-dependent setup times: a simulated annealing approach," Omega, Elsevier, vol. 25(6), pages 619-634, December.
    35. Weng, Michael X. & Lu, John & Ren, Haiying, 2001. "Unrelated parallel machine scheduling with setup consideration and a total weighted completion time objective," International Journal of Production Economics, Elsevier, vol. 70(3), pages 215-226, April.
    36. Anghinolfi, Davide & Paolucci, Massimo, 2009. "A new discrete particle swarm optimization approach for the single-machine total weighted tardiness scheduling problem with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 193(1), pages 73-85, February.
    37. Silva, Marcos Melo & Subramanian, Anand & Vidal, Thibaut & Ochi, Luiz Satoru, 2012. "A simple and effective metaheuristic for the Minimum Latency Problem," European Journal of Operational Research, Elsevier, vol. 221(3), pages 513-520.
    38. E. DYER, Martin & WOLSEY, Laurence A., 1990. "Formulating the single machine sequencing problem with release dates as a mixed integer program," LIDAM Reprints CORE 917, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    39. Christos Koulamas, 1997. "Decomposition and hybrid simulated annealing heuristics for the parallel‐machine total tardiness problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(1), pages 109-125, February.
    40. J.M. van den Akker & C.A.J. Hurkens & M.W.P. Savelsbergh, 2000. "Time-Indexed Formulations for Machine Scheduling Problems: Column Generation," INFORMS Journal on Computing, INFORMS, vol. 12(2), pages 111-124, May.
    41. Wan, Guohua & Yen, Benjamin P. -C., 2002. "Tabu search for single machine scheduling with distinct due windows and weighted earliness/tardiness penalties," European Journal of Operational Research, Elsevier, vol. 142(2), pages 271-281, October.
    42. Zhi-Long Chen & Warren B. Powell, 1999. "Solving Parallel Machine Scheduling Problems by Column Generation," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 78-94, February.
    43. Kerem Bülbül & Halil Şen, 2017. "An exact extended formulation for the unrelated parallel machine total weighted completion time problem," Journal of Scheduling, Springer, vol. 20(4), pages 373-389, August.
    44. Chengbin Chu, 1992. "A branch‐and‐bound algorithm to minimize total flow time with unequal release dates," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(6), pages 859-875, October.
    45. Franca, Paulo M. & Mendes, Alexandre & Moscato, Pablo, 2001. "A memetic algorithm for the total tardiness single machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 132(1), pages 224-242, July.
    46. R. Nessah & Farouk Yalaoui & C. Chu, 2008. "A branch and bound algorithm to minimize total weighted completion time on identical parallel machines with job release date," Post-Print hal-00580602, HAL.
    47. Gupta, Skylab R. & Smith, Jeffrey S., 2006. "Algorithms for single machine total tardiness scheduling with sequence dependent setups," European Journal of Operational Research, Elsevier, vol. 175(2), pages 722-739, December.
    48. Editors, 2014. "International Journal of Systems Science," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(12), pages 1-1, December.
    49. Hendel, Yann & Sourd, Francis, 2006. "Efficient neighborhood search for the one-machine earliness-tardiness scheduling problem," European Journal of Operational Research, Elsevier, vol. 173(1), pages 108-119, August.
    50. Michael R. Garey & Robert E. Tarjan & Gordon T. Wilfong, 1988. "One-Processor Scheduling with Symmetric Earliness and Tardiness Penalties," Mathematics of Operations Research, INFORMS, vol. 13(2), pages 330-348, May.
    51. Pereira Lopes, Manuel J. & de Carvalho, J.M. Valerio, 2007. "A branch-and-price algorithm for scheduling parallel machines with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1508-1527, February.
    52. Geiger, Martin Josef, 2010. "On heuristic search for the single machine total weighted tardiness problem - Some theoretical insights and their empirical verification," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1235-1243, December.
    53. Esteve, B. & Aubijoux, C. & Chartier, A. & T'kindt, V., 2006. "A recovering beam search algorithm for the single machine Just-in-Time scheduling problem," European Journal of Operational Research, Elsevier, vol. 172(3), pages 798-813, August.
    54. Guang Feng & Hoong Lau, 2008. "Efficient algorithms for machine scheduling problems with earliness and tardiness penalties," Annals of Operations Research, Springer, vol. 159(1), pages 83-95, March.
    55. Tanaka, Shunji & Araki, Mituhiko, 2008. "A branch-and-bound algorithm with Lagrangian relaxation to minimize total tardiness on identical parallel machines," International Journal of Production Economics, Elsevier, vol. 113(1), pages 446-458, May.
    56. Shim, Sang-Oh & Kim, Yeong-Dae, 2007. "Scheduling on parallel identical machines to minimize total tardiness," European Journal of Operational Research, Elsevier, vol. 177(1), pages 135-146, February.
    57. J-F Cordeau & G Laporte & A Mercier, 2001. "A unified tabu search heuristic for vehicle routing problems with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(8), pages 928-936, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alidaee, Bahram & Li, Haitao & Wang, Haibo & Womer, Keith, 2021. "Integer programming formulations in sequencing with total earliness and tardiness penalties, arbitrary due dates, and no idle time: A concise review and extension," Omega, Elsevier, vol. 103(C).
    2. Yusuf Yilmaz & Can B. Kalayci, 2022. "Variable Neighborhood Search Algorithms to Solve the Electric Vehicle Routing Problem with Simultaneous Pickup and Delivery," Mathematics, MDPI, vol. 10(17), pages 1-22, August.
    3. Alves de Queiroz, Thiago & Iori, Manuel & Kramer, Arthur & Kuo, Yong-Hong, 2023. "Dynamic scheduling of patients in emergency departments," European Journal of Operational Research, Elsevier, vol. 310(1), pages 100-116.
    4. Falq, Anne-Elisabeth & Fouilhoux, Pierre & Kedad-Sidhoum, Safia, 2022. "Dominance inequalities for scheduling around an unrestrictive common due date," European Journal of Operational Research, Elsevier, vol. 296(2), pages 453-464.
    5. Teobaldo Bulhões & Ruslan Sadykov & Anand Subramanian & Eduardo Uchoa, 2020. "On the exact solution of a large class of parallel machine scheduling problems," Journal of Scheduling, Springer, vol. 23(4), pages 411-429, August.
    6. Kramer, Arthur & Iori, Manuel & Lacomme, Philippe, 2021. "Mathematical formulations for scheduling jobs on identical parallel machines with family setup times and total weighted completion time minimization," European Journal of Operational Research, Elsevier, vol. 289(3), pages 825-840.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teobaldo Bulhões & Ruslan Sadykov & Anand Subramanian & Eduardo Uchoa, 2020. "On the exact solution of a large class of parallel machine scheduling problems," Journal of Scheduling, Springer, vol. 23(4), pages 411-429, August.
    2. Halil Şen & Kerem Bülbül, 2015. "A Strong Preemptive Relaxation for Weighted Tardiness and Earliness/Tardiness Problems on Unrelated Parallel Machines," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 135-150, February.
    3. Daniel Kowalczyk & Roel Leus, 2018. "A Branch-and-Price Algorithm for Parallel Machine Scheduling Using ZDDs and Generic Branching," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 768-782, November.
    4. Kerem Bülbül & Halil Şen, 2017. "An exact extended formulation for the unrelated parallel machine total weighted completion time problem," Journal of Scheduling, Springer, vol. 20(4), pages 373-389, August.
    5. Rabia Nessah & Chengbin Chu, 2010. "Infinite split scheduling: a new lower bound of total weighted completion time on parallel machines with job release dates and unavailability periods," Annals of Operations Research, Springer, vol. 181(1), pages 359-375, December.
    6. Francis Sourd, 2009. "New Exact Algorithms for One-Machine Earliness-Tardiness Scheduling," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 167-175, February.
    7. Daniel Schubert & André Scholz & Gerhard Wäscher, 2018. "Integrated order picking and vehicle routing with due dates," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 1109-1139, October.
    8. Yunpeng Pan & Zhe Liang, 2017. "Dual relaxations of the time-indexed ILP formulation for min–sum scheduling problems," Annals of Operations Research, Springer, vol. 249(1), pages 197-213, February.
    9. Berghman, Lotte & Leus, Roel, 2015. "Practical solutions for a dock assignment problem with trailer transportation," European Journal of Operational Research, Elsevier, vol. 246(3), pages 787-799.
    10. Daniel Schubert & André Scholz & Gerhard Wäscher, 2017. "Integrated Order Picking and Vehicle Routing with Due Dates," FEMM Working Papers 170007, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    11. Zhi Pei & Mingzhong Wan & Ziteng Wang, 2020. "A new approximation algorithm for unrelated parallel machine scheduling with release dates," Annals of Operations Research, Springer, vol. 285(1), pages 397-425, February.
    12. Mensendiek, Arne & Gupta, Jatinder N.D. & Herrmann, Jan, 2015. "Scheduling identical parallel machines with fixed delivery dates to minimize total tardiness," European Journal of Operational Research, Elsevier, vol. 243(2), pages 514-522.
    13. Wang, Haibo & Alidaee, Bahram, 2019. "Effective heuristic for large-scale unrelated parallel machines scheduling problems," Omega, Elsevier, vol. 83(C), pages 261-274.
    14. Natashia Boland & Riley Clement & Hamish Waterer, 2016. "A Bucket Indexed Formulation for Nonpreemptive Single Machine Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 14-30, February.
    15. Rachid Benmansour & Oliver Braun & Saïd Hanafi, 2019. "The single-processor scheduling problem with time restrictions: complexity and related problems," Journal of Scheduling, Springer, vol. 22(4), pages 465-471, August.
    16. Allahverdi, Ali & Ng, C.T. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2008. "A survey of scheduling problems with setup times or costs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 985-1032, June.
    17. Allahverdi, Ali, 2015. "The third comprehensive survey on scheduling problems with setup times/costs," European Journal of Operational Research, Elsevier, vol. 246(2), pages 345-378.
    18. Dunstall, Simon & Wirth, Andrew, 2005. "A comparison of branch-and-bound algorithms for a family scheduling problem with identical parallel machines," European Journal of Operational Research, Elsevier, vol. 167(2), pages 283-296, December.
    19. Söhnke Maecker & Liji Shen, 2020. "Solving parallel machine problems with delivery times and tardiness objectives," Annals of Operations Research, Springer, vol. 285(1), pages 315-334, February.
    20. Hanen Akrout & Bassem Jarboui & Patrick Siarry & Abdelwaheb Rebaï, 2012. "A GRASP based on DE to solve single machine scheduling problem with SDST," Computational Optimization and Applications, Springer, vol. 51(1), pages 411-435, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:22:y:2019:i:1:d:10.1007_s10951-017-0549-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.