IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v246y2015i3p787-799.html
   My bibliography  Save this article

Practical solutions for a dock assignment problem with trailer transportation

Author

Listed:
  • Berghman, Lotte
  • Leus, Roel

Abstract

We study a distribution warehouse in which trailers need to be assigned to docks for loading or unloading. A parking lot is used as a buffer zone and transportation between the parking lot and the docks is performed by auxiliary resources called terminal tractors. Each incoming trailer has a known arrival time and each outgoing trailer a desired departure time. The primary objective is to produce a docking schedule such that the weighted sum of the number of late outgoing trailers and the tardiness of these trailers is minimized; the secondary objective is to minimize the weighted completion time of all trailers, both incoming and outgoing. The purpose of this paper is to produce high-quality solutions to large instances that are comparable to a real-life case. This will oblige us to abandon the guarantee of always finding an optimal solution, and we will instead look into a number of sub-optimal procedures. We implement four different methods: a mathematical formulation that can be solved using an IP solver, a branch-and-bound algorithm, a beam search procedure and a tabu search method. Lagrangian relaxation is embedded in the algorithms for computing lower bounds. The different solution frameworks are compared via extensive computational experiments.

Suggested Citation

  • Berghman, Lotte & Leus, Roel, 2015. "Practical solutions for a dock assignment problem with trailer transportation," European Journal of Operational Research, Elsevier, vol. 246(3), pages 787-799.
  • Handle: RePEc:eee:ejores:v:246:y:2015:i:3:p:787-799
    DOI: 10.1016/j.ejor.2015.05.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715004683
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.05.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boysen, Nils & Fliedner, Malte, 2010. "Cross dock scheduling: Classification, literature review and research agenda," Omega, Elsevier, vol. 38(6), pages 413-422, December.
    2. Miao, Zhaowei & Lim, Andrew & Ma, Hong, 2009. "Truck dock assignment problem with operational time constraint within crossdocks," European Journal of Operational Research, Elsevier, vol. 192(1), pages 105-115, January.
    3. Hoogeveen, Han, 2005. "Multicriteria scheduling," European Journal of Operational Research, Elsevier, vol. 167(3), pages 592-623, December.
    4. Ruslan Sadykov & Laurence A. Wolsey, 2006. "Integer Programming and Constraint Programming in Solving a Multimachine Assignment Scheduling Problem with Deadlines and Release Dates," INFORMS Journal on Computing, INFORMS, vol. 18(2), pages 209-217, May.
    5. Graves, Stephen C., 1983. "Scheduling of re-entrant flow shops," Working papers 1438-83., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    6. Marshall L. Fisher, 1981. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 27(1), pages 1-18, January.
    7. Erik Demeulemeester & Willy Herroelen, 1992. "A Branch-and-Bound Procedure for the Multiple Resource-Constrained Project Scheduling Problem," Management Science, INFORMS, vol. 38(12), pages 1803-1818, December.
    8. Azizoglu, Meral & Kirca, Omer, 1998. "Tardiness minimization on parallel machines," International Journal of Production Economics, Elsevier, vol. 55(2), pages 163-168, July.
    9. Moursli, O. & Pochet, Y., 2000. "A branch-and-bound algorithm for the hybrid flowshop," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 113-125, March.
    10. R. Nessah & Farouk Yalaoui & C. Chu, 2008. "A branch and bound algorithm to minimize total weighted completion time on identical parallel machines with job release date," Post-Print hal-00580602, HAL.
    11. Kis, Tamas & Pesch, Erwin, 2005. "A review of exact solution methods for the non-preemptive multiprocessor flowshop problem," European Journal of Operational Research, Elsevier, vol. 164(3), pages 592-608, August.
    12. Rolf H. Möhring & Andreas S. Schulz & Frederik Stork & Marc Uetz, 2003. "Solving Project Scheduling Problems by Minimum Cut Computations," Management Science, INFORMS, vol. 49(3), pages 330-350, March.
    13. Ghirardi, M. & Potts, C. N., 2005. "Makespan minimization for scheduling unrelated parallel machines: A recovering beam search approach," European Journal of Operational Research, Elsevier, vol. 165(2), pages 457-467, September.
    14. Van Belle, Jan & Valckenaers, Paul & Cattrysse, Dirk, 2012. "Cross-docking: State of the art," Omega, Elsevier, vol. 40(6), pages 827-846.
    15. F Della Croce & V T'kindt, 2002. "A Recovering Beam Search algorithm for the one-machine dynamic total completion time scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(11), pages 1275-1280, November.
    16. Rainer Kolisch & Arno Sprecher & Andreas Drexl, 1995. "Characterization and Generation of a General Class of Resource-Constrained Project Scheduling Problems," Management Science, INFORMS, vol. 41(10), pages 1693-1703, October.
    17. Herroelen, Willy & Leus, Roel, 2005. "Project scheduling under uncertainty: Survey and research potentials," European Journal of Operational Research, Elsevier, vol. 165(2), pages 289-306, September.
    18. Azizoglu, Meral & Kirca, Omer, 1999. "On the minimization of total weighted flow time with identical and uniform parallel machines," European Journal of Operational Research, Elsevier, vol. 113(1), pages 91-100, February.
    19. Kolisch, Rainer, 1996. "Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation," European Journal of Operational Research, Elsevier, vol. 90(2), pages 320-333, April.
    20. Lotte Berghman & Roel Leus & Frits Spieksma, 2014. "Optimal solutions for a dock assignment problem with trailer transportation," Annals of Operations Research, Springer, vol. 213(1), pages 3-25, February.
    21. Esteve, B. & Aubijoux, C. & Chartier, A. & T'kindt, V., 2006. "A recovering beam search algorithm for the single machine Just-in-Time scheduling problem," European Journal of Operational Research, Elsevier, vol. 172(3), pages 798-813, August.
    22. Yu, Wooyeon & Egbelu, Pius J., 2008. "Scheduling of inbound and outbound trucks in cross docking systems with temporary storage," European Journal of Operational Research, Elsevier, vol. 184(1), pages 377-396, January.
    23. Shim, Sang-Oh & Kim, Yeong-Dae, 2007. "Scheduling on parallel identical machines to minimize total tardiness," European Journal of Operational Research, Elsevier, vol. 177(1), pages 135-146, February.
    24. SADYKOV, Ruslan & WOLSEY, Laurence A., 2006. "Integer programming and constraint programming in solving a multimachine assignment scheduling problem with deadlines and release dates," LIDAM Reprints CORE 1854, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    25. Mohamed Haouari & Lotfi Hidri & Anis Gharbi, 2006. "Optimal Scheduling of a Two-stage Hybrid Flow Shop," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(1), pages 107-124, August.
    26. Carlos Paternina-Arboleda & Jairo Montoya-Torres & Milton Acero-Dominguez & Maria Herrera-Hernandez, 2008. "Scheduling jobs on a k-stage flexible flow-shop," Annals of Operations Research, Springer, vol. 164(1), pages 29-40, November.
    27. Sarin, Subhash C. & Hariharan, R., 2000. "A two machine bicriteria scheduling problem," International Journal of Production Economics, Elsevier, vol. 65(2), pages 125-139, April.
    28. L Tang & H Xuan, 2006. "Lagrangian relaxation algorithms for real-time hybrid flowshop scheduling with finite intermediate buffers," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(3), pages 316-324, March.
    29. Andreas Drexl, 1991. "Scheduling of Project Networks by Job Assignment," Management Science, INFORMS, vol. 37(12), pages 1590-1602, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wolff, Pascal & Emde, Simon & Pfohl, Hans-Christian, 2021. "Internal resource requirements: The better performance metric for truck scheduling?," Omega, Elsevier, vol. 103(C).
    2. Fan Yang & Roel Leus, 2021. "Scheduling hybrid flow shops with time windows," Journal of Heuristics, Springer, vol. 27(1), pages 133-158, April.
    3. Chagas, Guilherme O. & Coelho, Leandro C. & Darvish, Maryam & Renaud, Jacques, 2023. "Modeling and solving the waste valorization production and distribution scheduling problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 400-417.
    4. Giorgi Tadumadze & Nils Boysen & Simon Emde, 2020. "Robust spotter scheduling in trailer yards," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 995-1021, December.
    5. Tadumadze, Giorgi & Boysen, Nils & Emde, Simon & Weidinger, Felix, 2019. "Integrated truck and workforce scheduling to accelerate the unloading of trucks," European Journal of Operational Research, Elsevier, vol. 278(1), pages 343-362.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lotte Berghman & Roel Leus & Frits Spieksma, 2014. "Optimal solutions for a dock assignment problem with trailer transportation," Annals of Operations Research, Springer, vol. 213(1), pages 3-25, February.
    2. Arthur Kramer & Anand Subramanian, 2019. "A unified heuristic and an annotated bibliography for a large class of earliness–tardiness scheduling problems," Journal of Scheduling, Springer, vol. 22(1), pages 21-57, February.
    3. Gelareh, Shahin & Monemi, Rahimeh Neamatian & Semet, Frédéric & Goncalves, Gilles, 2016. "A branch-and-cut algorithm for the truck dock assignment problem with operational time constraints," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1144-1152.
    4. Gaudioso, Manlio & Monaco, Maria Flavia & Sammarra, Marcello, 2021. "A Lagrangian heuristics for the truck scheduling problem in multi-door, multi-product Cross-Docking with constant processing time," Omega, Elsevier, vol. 101(C).
    5. Böttcher, Jan & Drexl, Andreas & Kolisch, Rainer & Salewski, Frank, 1996. "Project scheduling under partially renewable resource constraints," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 398, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    6. Nils Boysen & Stefan Fedtke & Felix Weidinger, 2017. "Truck Scheduling in the Postal Service Industry," Transportation Science, INFORMS, vol. 51(2), pages 723-736, May.
    7. Valls, Vicente & Ballestin, Francisco & Quintanilla, Sacramento, 2005. "Justification and RCPSP: A technique that pays," European Journal of Operational Research, Elsevier, vol. 165(2), pages 375-386, September.
    8. Rijal, Arpan & Bijvank, Marco & de Koster, René, 2019. "Integrated scheduling and assignment of trucks at unit-load cross-dock terminals with mixed service mode dock doors," European Journal of Operational Research, Elsevier, vol. 278(3), pages 752-771.
    9. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    10. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
    11. Schirmer, Andreas & Riesenberg, Sven, 1997. "Parameterized heuristics for project scheduling: Biased random sampling methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 456, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    12. Peter Bodnar & René de Koster & Kaveh Azadeh, 2017. "Scheduling Trucks in a Cross-Dock with Mixed Service Mode Dock Doors," Transportation Science, INFORMS, vol. 51(1), pages 112-131, February.
    13. Konur, Dinçer & Golias, Mihalis M., 2013. "Cost-stable truck scheduling at a cross-dock facility with unknown truck arrivals: A meta-heuristic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 71-91.
    14. Jorge M. S. Valente, 2007. "Beam search heuristics for the single machine scheduling problem with linear earliness and quadratic tardiness costs," FEP Working Papers 250, Universidade do Porto, Faculdade de Economia do Porto.
    15. Sprecher, Arno, 1996. "Solving the RCPSP efficiently at modest memory requirements," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 425, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    16. Drexl, Andreas & Kolisch, Rainer & Sprecher, Arno, 1995. "Neuere Entwicklungen in der computergestützten Projektplanung," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 379, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    17. Schirmer, Andreas & Riesenberg, Sven, 1998. "Class-based control schemes for parameterized project scheduling heuristics," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 471, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    18. J M S Valente, 2010. "Beam search heuristics for quadratic earliness and tardiness scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 620-631, April.
    19. Antonino Chiarello & Manlio Gaudioso & Marcello Sammarra, 2018. "Truck synchronization at single door cross-docking terminals," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(2), pages 395-447, March.
    20. Ruiz, Rubén & Vázquez-Rodríguez, José Antonio, 2010. "The hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:246:y:2015:i:3:p:787-799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.