IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v57y2006i3d10.1057_palgrave.jors.2602033.html
   My bibliography  Save this article

Lagrangian relaxation algorithms for real-time hybrid flowshop scheduling with finite intermediate buffers

Author

Listed:
  • L Tang

    (Northeastern University)

  • H Xuan

    (Northeastern University)

Abstract

We investigate the problem of scheduling N jobs on parallel identical machines in J successive stages with finite buffer capacities between consecutive stages in a real-time environment. The objective is to find a schedule that minimizes the sum of weighted completion time of jobs. This problem has proven strongly NP-hard. In this paper, the scheduling problem is formulated as an integer programming model considering buffers as machines with zero processing time. Lagrangian relaxation algorithms are developed combined with a speed-up dynamic programming approach. The complication and time consumption of solving all the subproblems at each iteration in subgradient optimization motivate the development of the surrogate subgradient method, where only one subproblem is minimized at each iteration and an adaptive multiplier update scheme of Lagrangian multipliers is designed. Computational experiments with up to 100 jobs show that the designed surrogate subgradient algorithm provides a better performance as compared to the subgradient algorithm.

Suggested Citation

  • L Tang & H Xuan, 2006. "Lagrangian relaxation algorithms for real-time hybrid flowshop scheduling with finite intermediate buffers," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(3), pages 316-324, March.
  • Handle: RePEc:pal:jorsoc:v:57:y:2006:i:3:d:10.1057_palgrave.jors.2602033
    DOI: 10.1057/palgrave.jors.2602033
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602033
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Luh & Ling Gou & Yuanhui Zhang & Takaaki Nagahora & Makoto Tsuji & Kiyoshi Yoneda & Tetsuo Hasegawa & Yuji Kyoya & Toshiyuki Kano, 1998. "Job shop scheduling with group-dependent setups, finite buffers, and long time horizon," Annals of Operations Research, Springer, vol. 76(0), pages 233-259, January.
    2. Bolat, Ahmet, 1997. "Sequencing jobs for an automated manufacturing module with buffer," European Journal of Operational Research, Elsevier, vol. 96(3), pages 622-635, February.
    3. Moursli, O. & Pochet, Y., 2000. "A branch-and-bound algorithm for the hybrid flowshop," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 113-125, March.
    4. Khosla, Inder, 1995. "The scheduling problem where multiple machines compete for a common local buffer," European Journal of Operational Research, Elsevier, vol. 84(2), pages 330-342, July.
    5. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2001. "A review of planning and scheduling systems and methods for integrated steel production," European Journal of Operational Research, Elsevier, vol. 133(1), pages 1-20, August.
    6. Nicholas G. Hall & Marc E. Posner & Chris N. Potts, 1998. "Scheduling with Finite Capacity Output Buffers," Operations Research, INFORMS, vol. 46(3-supplem), pages 84-97, June.
    7. Nicholas Hall & Marc Posner & Chris Potts, 1997. "Preemptive scheduling with finite capacity input buffers," Annals of Operations Research, Springer, vol. 70(0), pages 399-413, April.
    8. Nicholas G. Hall & Chelliah Sriskandarajah, 1996. "A Survey of Machine Scheduling Problems with Blocking and No-Wait in Process," Operations Research, INFORMS, vol. 44(3), pages 510-525, June.
    9. Brah, Shaukat A. & Loo, Luan Luan, 1999. "Heuristics for scheduling in a flow shop with multiple processors," European Journal of Operational Research, Elsevier, vol. 113(1), pages 113-122, February.
    10. Nicholas G. Hall & Marc E. Posner & Chris N. Potts, 1998. "Scheduling with Finite Capacity Input Buffers," Operations Research, INFORMS, vol. 46(3-supplem), pages 154-159, June.
    11. X. Zhao & P. B. Luh & J. Wang, 1999. "Surrogate Gradient Algorithm for Lagrangian Relaxation," Journal of Optimization Theory and Applications, Springer, vol. 100(3), pages 699-712, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lotte Berghman & Roel Leus & Frits Spieksma, 2014. "Optimal solutions for a dock assignment problem with trailer transportation," Annals of Operations Research, Springer, vol. 213(1), pages 3-25, February.
    2. Ruiz, Rubén & Vázquez-Rodríguez, José Antonio, 2010. "The hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 1-18, August.
    3. K-C Ying, 2009. "An iterated greedy heuristic for multistage hybrid flowshop scheduling problems with multiprocessor tasks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(6), pages 810-817, June.
    4. Berghman, Lotte & Leus, Roel, 2015. "Practical solutions for a dock assignment problem with trailer transportation," European Journal of Operational Research, Elsevier, vol. 246(3), pages 787-799.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quadt, Daniel & Kuhn, Heinrich, 2007. "A taxonomy of flexible flow line scheduling procedures," European Journal of Operational Research, Elsevier, vol. 178(3), pages 686-698, May.
    2. A Allahverdi & F S Al-Anzi, 2006. "Scheduling multi-stage parallel-processor services to minimize average response time," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 101-110, January.
    3. M Azizoglu & M Koksalan & S K Koksalan, 2003. "Scheduling to minimize maximum earliness and number of tardy jobs where machine idle time is allowed," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(6), pages 661-664, June.
    4. Ruiz, Rubén & Vázquez-Rodríguez, José Antonio, 2010. "The hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 1-18, August.
    5. Vo[ss], Stefan & Witt, Andreas, 2007. "Hybrid flow shop scheduling as a multi-mode multi-project scheduling problem with batching requirements: A real-world application," International Journal of Production Economics, Elsevier, vol. 105(2), pages 445-458, February.
    6. Yuan, Jinjiang & Soukhal, Ameur & Chen, Youjun & Lu, Lingfa, 2007. "A note on the complexity of flow shop scheduling with transportation constraints," European Journal of Operational Research, Elsevier, vol. 178(3), pages 918-925, May.
    7. Weiya Zhong & Yun Shi, 2018. "Two-stage no-wait hybrid flowshop scheduling with inter-stage flexibility," Journal of Combinatorial Optimization, Springer, vol. 35(1), pages 108-125, January.
    8. Xu, Jun & Wang, Jun-Qiang & Liu, Zhixin, 2022. "Parallel batch scheduling: Impact of increasing machine capacity," Omega, Elsevier, vol. 108(C).
    9. Xiaoyu Yu & Jingyi Qian & Yajing Zhang & Min Kong, 2023. "Supply Chain Scheduling Method for the Coordination of Agile Production and Port Delivery Operation," Mathematics, MDPI, vol. 11(15), pages 1-24, July.
    10. Ronconi, Débora P. & Henriques, Luís R.S., 2009. "Some heuristic algorithms for total tardiness minimization in a flowshop with blocking," Omega, Elsevier, vol. 37(2), pages 272-281, April.
    11. Berghman, Lotte & Leus, Roel, 2015. "Practical solutions for a dock assignment problem with trailer transportation," European Journal of Operational Research, Elsevier, vol. 246(3), pages 787-799.
    12. Anne Benoit & Mathias Coqblin & Jean-Marc Nicod & Veronika Rehn-Sonigo, 2016. "Optimizing memory allocation for multistage scheduling including setup times," Journal of Scheduling, Springer, vol. 19(6), pages 641-658, December.
    13. Lin, Shih-Wei & Ying, Kuo-Ching, 2016. "Optimization of makespan for no-wait flowshop scheduling problems using efficient matheuristics," Omega, Elsevier, vol. 64(C), pages 115-125.
    14. Smutnicki, Czeslaw & Pempera, Jaroslaw & Bocewicz, Grzegorz & Banaszak, Zbigniew, 2022. "Cyclic flow-shop scheduling with no-wait constraints and missing operations," European Journal of Operational Research, Elsevier, vol. 302(1), pages 39-49.
    15. Chen, Haoxun & Luh, Peter B., 2003. "An alternative framework to Lagrangian relaxation approach for job shop scheduling," European Journal of Operational Research, Elsevier, vol. 149(3), pages 499-512, September.
    16. Singer, Marcos & Donoso, Patricio, 2008. "Empirical validation of an activity-based optimization system," International Journal of Production Economics, Elsevier, vol. 113(1), pages 335-345, May.
    17. Joaquín Bautista-Valhondo & Rocío Alfaro-Pozo, 2020. "Mixed integer linear programming models for Flow Shop Scheduling with a demand plan of job types," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 5-23, March.
    18. Matthias Bultmann & Sigrid Knust & Stefan Waldherr, 2018. "Flow shop scheduling with flexible processing times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 809-829, July.
    19. Christoph Schuster, 2006. "No-wait Job Shop Scheduling: Tabu Search and Complexity of Subproblems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(3), pages 473-491, July.
    20. Allahverdi, Ali, 1999. "Stochastically minimizing total flowtime in flowshops with no waiting space," European Journal of Operational Research, Elsevier, vol. 113(1), pages 101-112, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:57:y:2006:i:3:d:10.1057_palgrave.jors.2602033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.