IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v61y2010i4d10.1057_jors.2008.191.html
   My bibliography  Save this article

Beam search heuristics for quadratic earliness and tardiness scheduling

Author

Listed:
  • J M S Valente

    (Universidade do Porto)

Abstract

In this paper, we present beam search heuristics for the single machine scheduling problem with quadratic earliness and tardiness costs, and no machine idle time. These heuristics include classic beam search procedures, as well as filtered and recovering algorithms. We consider three dispatching heuristics as evaluation functions, in order to analyse the effect of different rules on the performance of the beam search procedures. The computational results show that using better dispatching heuristics improves the effectiveness of the beam search algorithms. The performance of the several heuristics is similar for instances with low variability. For high variability instances, however, the detailed, filtered and recovering beam search (RBS) procedures clearly outperform the best existing heuristic. The detailed beam search algorithm performs quite well, and is recommended for small- to medium-sized instances. For larger instances, however, this procedure requires excessive computation times, and the RBS algorithm then becomes the heuristic of choice.

Suggested Citation

  • J M S Valente, 2010. "Beam search heuristics for quadratic earliness and tardiness scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 620-631, April.
  • Handle: RePEc:pal:jorsoc:v:61:y:2010:i:4:d:10.1057_jors.2008.191
    DOI: 10.1057/jors.2008.191
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2008.191
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2008.191?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghirardi, M. & Potts, C. N., 2005. "Makespan minimization for scheduling unrelated parallel machines: A recovering beam search approach," European Journal of Operational Research, Elsevier, vol. 165(2), pages 457-467, September.
    2. Kenneth R. Baker & Gary D. Scudder, 1990. "Sequencing with Earliness and Tardiness Penalties: A Review," Operations Research, INFORMS, vol. 38(1), pages 22-36, February.
    3. Schaller, Jeffrey, 2002. "Minimizing the sum of squares lateness on a single machine," European Journal of Operational Research, Elsevier, vol. 143(1), pages 64-79, November.
    4. Esteve, B. & Aubijoux, C. & Chartier, A. & T'kindt, V., 2006. "A recovering beam search algorithm for the single machine Just-in-Time scheduling problem," European Journal of Operational Research, Elsevier, vol. 172(3), pages 798-813, August.
    5. John J. Kanet & V. Sridharan, 2000. "Scheduling with Inserted Idle Time: Problem Taxonomy and Literature Review," Operations Research, INFORMS, vol. 48(1), pages 99-110, February.
    6. Su, Ling-Huey & Chang, Pei-Chann, 1998. "A heuristic to minimize a quadratic function of job lateness on a single machine," International Journal of Production Economics, Elsevier, vol. 55(2), pages 169-175, July.
    7. Hoogeveen, Han, 2005. "Multicriteria scheduling," European Journal of Operational Research, Elsevier, vol. 167(3), pages 592-623, December.
    8. George Li, 1997. "Single machine earliness and tardiness scheduling," European Journal of Operational Research, Elsevier, vol. 96(3), pages 546-558, February.
    9. Peng Si Ow & Thomas E. Morton, 1989. "The Single Machine Early/Tardy Problem," Management Science, INFORMS, vol. 35(2), pages 177-191, February.
    10. F Della Croce & V T'kindt, 2002. "A Recovering Beam Search algorithm for the one-machine dynamic total completion time scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(11), pages 1275-1280, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lvjiang Yin & Xinyu Li & Chao Lu & Liang Gao, 2016. "Energy-Efficient Scheduling Problem Using an Effective Hybrid Multi-Objective Evolutionary Algorithm," Sustainability, MDPI, vol. 8(12), pages 1-33, December.
    2. Billaut, Jean-Charles & Della Croce, Federico & Grosso, Andrea, 2015. "A single machine scheduling problem with two-dimensional vector packing constraints," European Journal of Operational Research, Elsevier, vol. 243(1), pages 75-81.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge M. S. Valente, 2008. "Beam search heuristics for quadratic earliness and tardiness scheduling," FEP Working Papers 279, Universidade do Porto, Faculdade de Economia do Porto.
    2. Jorge M. S. Valente & Maria R. A. Moreira & Alok Singh & Rui A. F. S. Alves, 2009. "Genetic algorithms for single machine scheduling with quadratic earliness and tardiness costs," FEP Working Papers 312, Universidade do Porto, Faculdade de Economia do Porto.
    3. Jorge M. S. Valente, 2007. "Beam search heuristics for the single machine scheduling problem with linear earliness and quadratic tardiness costs," FEP Working Papers 250, Universidade do Porto, Faculdade de Economia do Porto.
    4. Jorge M. S. Valente & Maria R. A. Moreira, 2008. "Greedy randomized dispatching heuristics for the single machine scheduling problem with quadratic earliness and tardiness penalties," FEP Working Papers 286, Universidade do Porto, Faculdade de Economia do Porto.
    5. Berghman, Lotte & Leus, Roel, 2015. "Practical solutions for a dock assignment problem with trailer transportation," European Journal of Operational Research, Elsevier, vol. 246(3), pages 787-799.
    6. Valente, Jorge M.S. & Alves, Rui A.F.S., 2007. "Heuristics for the early/tardy scheduling problem with release dates," International Journal of Production Economics, Elsevier, vol. 106(1), pages 261-274, March.
    7. Baker, Kenneth R., 2014. "Minimizing earliness and tardiness costs in stochastic scheduling," European Journal of Operational Research, Elsevier, vol. 236(2), pages 445-452.
    8. Alidaee, Bahram & Li, Haitao & Wang, Haibo & Womer, Keith, 2021. "Integer programming formulations in sequencing with total earliness and tardiness penalties, arbitrary due dates, and no idle time: A concise review and extension," Omega, Elsevier, vol. 103(C).
    9. Schaller, Jeffrey & Valente, Jorge M.S., 2020. "Minimizing total earliness and tardiness in a nowait flow shop," International Journal of Production Economics, Elsevier, vol. 224(C).
    10. Arthur Kramer & Anand Subramanian, 2019. "A unified heuristic and an annotated bibliography for a large class of earliness–tardiness scheduling problems," Journal of Scheduling, Springer, vol. 22(1), pages 21-57, February.
    11. Sabuncuoglu, Ihsan & Gocgun, Yasin & Erel, Erdal, 2008. "Backtracking and exchange of information: Methods to enhance a beam search algorithm for assembly line scheduling," European Journal of Operational Research, Elsevier, vol. 186(3), pages 915-930, May.
    12. Janiak, Adam & Janiak, Władysław A. & Krysiak, Tomasz & Kwiatkowski, Tomasz, 2015. "A survey on scheduling problems with due windows," European Journal of Operational Research, Elsevier, vol. 242(2), pages 347-357.
    13. Wan, Guohua & Yen, Benjamin P. -C., 2002. "Tabu search for single machine scheduling with distinct due windows and weighted earliness/tardiness penalties," European Journal of Operational Research, Elsevier, vol. 142(2), pages 271-281, October.
    14. Jorge M. S. Valente & Rui A. F. S. Alves, 2004. "Filtered and Recovering beam search algorithms for the early/tardy scheduling problem with no idle time," FEP Working Papers 142, Universidade do Porto, Faculdade de Economia do Porto.
    15. Xia, Yu & Chen, Bintong & Yue, Jinfeng, 2008. "Job sequencing and due date assignment in a single machine shop with uncertain processing times," European Journal of Operational Research, Elsevier, vol. 184(1), pages 63-75, January.
    16. J M S Valente & R A F S Alves, 2005. "Improved lower bounds for the early/tardy scheduling problem with no idle time," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 604-612, May.
    17. Chen, Shih-Hsin & Chen, Min-Chih, 2013. "Addressing the advantages of using ensemble probabilistic models in Estimation of Distribution Algorithms for scheduling problems," International Journal of Production Economics, Elsevier, vol. 141(1), pages 24-33.
    18. Erenay, Fatih Safa & Sabuncuoglu, Ihsan & Toptal, Aysegül & Tiwari, Manoj Kumar, 2010. "New solution methods for single machine bicriteria scheduling problem: Minimization of average flowtime and number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 201(1), pages 89-98, February.
    19. Billaut, Jean-Charles & Della Croce, Federico & Grosso, Andrea, 2015. "A single machine scheduling problem with two-dimensional vector packing constraints," European Journal of Operational Research, Elsevier, vol. 243(1), pages 75-81.
    20. R-H Huang & C-L Yang, 2009. "An algorithm for minimizing flow time and maximum earliness on a single machine," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(6), pages 873-877, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:61:y:2010:i:4:d:10.1057_jors.2008.191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.