IDEAS home Printed from https://ideas.repec.org/p/por/fepwps/279.html
   My bibliography  Save this paper

Beam search heuristics for quadratic earliness and tardiness scheduling

Author

Listed:
  • Jorge M. S. Valente

    (LIAAD, Faculdade de Economia, Universidade do Porto, Portugal)

Abstract

In this paper, we present beam search heuristics for the single machine scheduling problem with quadratic earliness and tardiness costs, and no machine idle time. These heuristics include classic beam search procedures, as well as filtered and recovering algorithms. We consider three dispatching heuristics as evaluation functions, in order to analyse the effect of different rules on the performance of the beam search procedures. The computational results show that using better dispatching heuristics improves the effectiveness of the beam search algorithms. The performance of the several heuristics is similar for instances with low variability. For high variability instances, however, the detailed, filtered and recovering beam search procedures clearly outperform the best existing heuristic. The detailed beam search algorithm performs quite well, and is recommended for small to medium size instances. For larger instances, however, this procedure requires excessive computation times, and the recovering beam search algorithm then becomes the heuristic of choice.

Suggested Citation

  • Jorge M. S. Valente, 2008. "Beam search heuristics for quadratic earliness and tardiness scheduling," FEP Working Papers 279, Universidade do Porto, Faculdade de Economia do Porto.
  • Handle: RePEc:por:fepwps:279
    as

    Download full text from publisher

    File URL: http://www.fep.up.pt/investigacao/workingpapers/08.06.12_wp279.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kenneth R. Baker & Gary D. Scudder, 1990. "Sequencing with Earliness and Tardiness Penalties: A Review," Operations Research, INFORMS, vol. 38(1), pages 22-36, February.
    2. Schaller, Jeffrey, 2002. "Minimizing the sum of squares lateness on a single machine," European Journal of Operational Research, Elsevier, vol. 143(1), pages 64-79, November.
    3. Esteve, B. & Aubijoux, C. & Chartier, A. & T'kindt, V., 2006. "A recovering beam search algorithm for the single machine Just-in-Time scheduling problem," European Journal of Operational Research, Elsevier, vol. 172(3), pages 798-813, August.
    4. John J. Kanet & V. Sridharan, 2000. "Scheduling with Inserted Idle Time: Problem Taxonomy and Literature Review," Operations Research, INFORMS, vol. 48(1), pages 99-110, February.
    5. Jorge M. S. Valente, 2007. "An exact approach for single machine scheduling with quadratic earliness and tardiness penalties," FEP Working Papers 238, Universidade do Porto, Faculdade de Economia do Porto.
    6. Hoogeveen, Han, 2005. "Multicriteria scheduling," European Journal of Operational Research, Elsevier, vol. 167(3), pages 592-623, December.
    7. George Li, 1997. "Single machine earliness and tardiness scheduling," European Journal of Operational Research, Elsevier, vol. 96(3), pages 546-558, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandre Almeida & Aurora A.C. Teixeira, 2008. "One size does not fit all… An economic development perspective on the asymmetric impact of Patents on R&D," FEP Working Papers 292, Universidade do Porto, Faculdade de Economia do Porto.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J M S Valente, 2010. "Beam search heuristics for quadratic earliness and tardiness scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 620-631, April.
    2. Jorge M. S. Valente & Maria R. A. Moreira & Alok Singh & Rui A. F. S. Alves, 2009. "Genetic algorithms for single machine scheduling with quadratic earliness and tardiness costs," FEP Working Papers 312, Universidade do Porto, Faculdade de Economia do Porto.
    3. Jorge M. S. Valente & Maria R. A. Moreira, 2008. "Greedy randomized dispatching heuristics for the single machine scheduling problem with quadratic earliness and tardiness penalties," FEP Working Papers 286, Universidade do Porto, Faculdade de Economia do Porto.
    4. Arthur Kramer & Anand Subramanian, 2019. "A unified heuristic and an annotated bibliography for a large class of earliness–tardiness scheduling problems," Journal of Scheduling, Springer, vol. 22(1), pages 21-57, February.
    5. Valente, Jorge M.S. & Alves, Rui A.F.S., 2007. "Heuristics for the early/tardy scheduling problem with release dates," International Journal of Production Economics, Elsevier, vol. 106(1), pages 261-274, March.
    6. Baker, Kenneth R., 2014. "Minimizing earliness and tardiness costs in stochastic scheduling," European Journal of Operational Research, Elsevier, vol. 236(2), pages 445-452.
    7. Jorge M. S. Valente, 2007. "Beam search heuristics for the single machine scheduling problem with linear earliness and quadratic tardiness costs," FEP Working Papers 250, Universidade do Porto, Faculdade de Economia do Porto.
    8. Janiak, Adam & Janiak, Władysław A. & Krysiak, Tomasz & Kwiatkowski, Tomasz, 2015. "A survey on scheduling problems with due windows," European Journal of Operational Research, Elsevier, vol. 242(2), pages 347-357.
    9. Alidaee, Bahram & Li, Haitao & Wang, Haibo & Womer, Keith, 2021. "Integer programming formulations in sequencing with total earliness and tardiness penalties, arbitrary due dates, and no idle time: A concise review and extension," Omega, Elsevier, vol. 103(C).
    10. Schaller, Jeffrey & Valente, Jorge M.S., 2020. "Minimizing total earliness and tardiness in a nowait flow shop," International Journal of Production Economics, Elsevier, vol. 224(C).
    11. J M S Valente & R A F S Alves, 2005. "Improved lower bounds for the early/tardy scheduling problem with no idle time," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 604-612, May.
    12. Berghman, Lotte & Leus, Roel, 2015. "Practical solutions for a dock assignment problem with trailer transportation," European Journal of Operational Research, Elsevier, vol. 246(3), pages 787-799.
    13. R-H Huang & C-L Yang, 2009. "An algorithm for minimizing flow time and maximum earliness on a single machine," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(6), pages 873-877, June.
    14. N Nekoiemehr & G Moslehi, 2011. "Minimizing the sum of maximum earliness and maximum tardiness in the single-machine scheduling problem with sequence-dependent setup time," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1403-1412, July.
    15. Detienne, Boris & Pinson, Éric & Rivreau, David, 2010. "Lagrangian domain reductions for the single machine earliness-tardiness problem with release dates," European Journal of Operational Research, Elsevier, vol. 201(1), pages 45-54, February.
    16. Jorge M. S. Valente & Rui A. F. S. Alves, 2003. "Improved Heuristics for the Early/Tardy Scheduling Problem with No Idle Time," FEP Working Papers 126, Universidade do Porto, Faculdade de Economia do Porto.
    17. Schaller, Jeffrey E. & Gupta, Jatinder N.D., 2008. "Single machine scheduling with family setups to minimize total earliness and tardiness," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1050-1068, June.
    18. Ali Salmasnia & Mostafa Khatami & Reza Kazemzadeh & Seyed Zegordi, 2015. "Bi-objective single machine scheduling problem with stochastic processing times," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 275-297, April.
    19. Kerem Bülbül & Safia Kedad-Sidhoum & Halil Şen, 2019. "Single-machine common due date total earliness/tardiness scheduling with machine unavailability," Journal of Scheduling, Springer, vol. 22(5), pages 543-565, October.
    20. Jorge M. S. Valente & Rui A. F. S. Alves, 2003. "Improved Lower Bounds for the Early/Tardy Scheduling Problem with No Idle Time," FEP Working Papers 125, Universidade do Porto, Faculdade de Economia do Porto.

    More about this item

    Keywords

    scheduling; heuristics; beam search; single machine; quadratic earliness; quadratic tardiness;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:por:fepwps:279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/fepuppt.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.