IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v23y2015i1p275-297.html
   My bibliography  Save this article

Bi-objective single machine scheduling problem with stochastic processing times

Author

Listed:
  • Ali Salmasnia
  • Mostafa Khatami
  • Reza Kazemzadeh
  • Seyed Zegordi

Abstract

In this study, a static single machine scheduling problem is investigated, where processing times are stochastic, due dates are deterministic and inserted idle time is allowed. Two objective functions are simultaneously taken into account, minimization of mean completion time and minimization of earliness and tardiness costs. A robust model is presented to tackle the problem, based on goal programming and a stochastic programming model named E-model. The proposed model not only obtains optimal operating systems, but also considers the variance of the objective functions and the correlation between them. Moreover, chance-constrained programming model is used to take into account the randomness in the constraints of the model. The model is presented with general distribution of processing times and the normal case is explored in experiments. Two sets of computational experiments are presented to test the efficiency of the proposed model. In the first set, the performance obtained by the bi-objective formulation is measured, where in the second set the performance obtained by incorporating robustness is measured. Results confirm the effectiveness of the proposed model, in both directions. Copyright Sociedad de Estadística e Investigación Operativa 2015

Suggested Citation

  • Ali Salmasnia & Mostafa Khatami & Reza Kazemzadeh & Seyed Zegordi, 2015. "Bi-objective single machine scheduling problem with stochastic processing times," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 275-297, April.
  • Handle: RePEc:spr:topjnl:v:23:y:2015:i:1:p:275-297
    DOI: 10.1007/s11750-014-0337-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11750-014-0337-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11750-014-0337-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diaz-Garcia, Jose A. & Ramos-Quiroga, Rogelio & Cabrera-Vicencio, Enrique, 2005. "Stochastic programming methods in the response surface methodology," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 837-848, June.
    2. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    3. Hoogeveen, Han, 2005. "Multicriteria scheduling," European Journal of Operational Research, Elsevier, vol. 167(3), pages 592-623, December.
    4. Kenneth R. Baker & Gary D. Scudder, 1990. "Sequencing with Earliness and Tardiness Penalties: A Review," Operations Research, INFORMS, vol. 38(1), pages 22-36, February.
    5. Xiaoqiang Cai & Xian Zhou, 2000. "Asymmetric Earliness and Tardiness Scheduling with Exponential Processing Times on an Unreliable Machine," Annals of Operations Research, Springer, vol. 98(1), pages 313-331, December.
    6. Soroush, H. M., 1999. "Sequencing and due-date determination in the stochastic single machine problem with earliness and tardiness costs," European Journal of Operational Research, Elsevier, vol. 113(2), pages 450-468, March.
    7. Soroush, H.M., 2007. "Minimizing the weighted number of early and tardy jobs in a stochastic single machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 181(1), pages 266-287, August.
    8. Soroush, H. M. & Fredendall, L. D., 1994. "The stochastic single machine scheduling problem with earliness and tardiness costs," European Journal of Operational Research, Elsevier, vol. 77(2), pages 287-302, September.
    9. A. Charnes & W. W. Cooper, 1963. "Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints," Operations Research, INFORMS, vol. 11(1), pages 18-39, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Salmasnia & Danial Mirabadi-Dastjerd, 2017. "Joint production and preventive maintenance scheduling for a single degraded machine by considering machine failures," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 544-578, October.
    2. Jonathan De La Vega & Alfredo Moreno & Reinaldo Morabito & Pedro Munari, 2023. "A robust optimization approach for the unrelated parallel machine scheduling problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 31-66, April.
    3. Tugba Saraç & Feristah Ozcelik & Mehmet Ertem, 2023. "Unrelated parallel machine scheduling problem with stochastic sequence dependent setup times," Operational Research, Springer, vol. 23(3), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lemos, R.F. & Ronconi, D.P., 2015. "Heuristics for the stochastic single-machine problem with E/T costs," International Journal of Production Economics, Elsevier, vol. 168(C), pages 131-142.
    2. Soroush, H.M., 2007. "Minimizing the weighted number of early and tardy jobs in a stochastic single machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 181(1), pages 266-287, August.
    3. Baker, Kenneth R., 2014. "Minimizing earliness and tardiness costs in stochastic scheduling," European Journal of Operational Research, Elsevier, vol. 236(2), pages 445-452.
    4. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    5. Wu, Desheng (Dash) & Lee, Chi-Guhn, 2010. "Stochastic DEA with ordinal data applied to a multi-attribute pricing problem," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1679-1688, December.
    6. Giada Spaccapanico Proietti & Mariagiulia Matteucci & Stefania Mignani & Bernard P. Veldkamp, 2024. "Chance-Constrained Automated Test Assembly," Journal of Educational and Behavioral Statistics, , vol. 49(1), pages 92-120, February.
    7. Bilsel, R. Ufuk & Ravindran, A., 2011. "A multiobjective chance constrained programming model for supplier selection under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1284-1300, September.
    8. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    9. Baker, Kenneth R. & Trietsch, Dan, 2009. "Safe scheduling: Setting due dates in single-machine problems," European Journal of Operational Research, Elsevier, vol. 196(1), pages 69-77, July.
    10. Gong, Jiangyue & Gujjula, Krishna Reddy & Ntaimo, Lewis, 2023. "An integrated chance constraints approach for optimal vaccination strategies under uncertainty for COVID-19," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    11. George Li, 1997. "Single machine earliness and tardiness scheduling," European Journal of Operational Research, Elsevier, vol. 96(3), pages 546-558, February.
    12. Maji, Chandi Charan, 1975. "Intertemporal allocation of irrigation water in the Mayurakshi Project (India): an application of deterministic and chance-constrained linear programming," ISU General Staff Papers 197501010800006381, Iowa State University, Department of Economics.
    13. Remica Aggarwal & S. P. Singh, 2019. "An integrated NPV-based supply chain configuration with third-party logistics services," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 18(5), pages 367-375, October.
    14. Özcan, Ugur, 2010. "Balancing stochastic two-sided assembly lines: A chance-constrained, piecewise-linear, mixed integer program and a simulated annealing algorithm," European Journal of Operational Research, Elsevier, vol. 205(1), pages 81-97, August.
    15. Rashed Khanjani Shiraz & Adel Hatami-Marbini & Ali Emrouznejad & Hirofumi Fukuyama, 2020. "Chance-constrained cost efficiency in data envelopment analysis model with random inputs and outputs," Operational Research, Springer, vol. 20(3), pages 1863-1898, September.
    16. Jorge M. S. Valente, 2008. "Beam search heuristics for quadratic earliness and tardiness scheduling," FEP Working Papers 279, Universidade do Porto, Faculdade de Economia do Porto.
    17. Diaz-Garcia, Jose A. & Garay-Tapia, Ma. Magdalena, 2007. "Optimum allocation in stratified surveys: Stochastic programming," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3016-3026, March.
    18. Alireza Azimian & Belaid Aouni, 2017. "Supply chain management through the stochastic goal programming model," Annals of Operations Research, Springer, vol. 251(1), pages 351-365, April.
    19. Chen, Kun & Zhu, Joe, 2019. "Computational tractability of chance constrained data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1037-1046.
    20. Yongjia Song & Minjiao Zhang, 2015. "Chance‐constrained multi‐terminal network design problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(4), pages 321-334, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:23:y:2015:i:1:p:275-297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.