IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v274y2019i3p1037-1046.html
   My bibliography  Save this article

Computational tractability of chance constrained data envelopment analysis

Author

Listed:
  • Chen, Kun
  • Zhu, Joe

Abstract

Chance constrained data envelopment analysis (DEA) is developed for modeling data uncertainty in inputs and outputs of a set of decision making units (DMUs). In the existing literature, chance constrained DEA includes E-model and P-model. The E-model maximizes functions related to the expectation of random inputs and outputs. The P-model maximizes the probability of stochastic events related to the random inputs and outputs. However, optimization methods for solving these models lack a formulation to convert the resulting DEA models into tractable optimization methodologies. The current study examines the nonlinearity of the chance constrained DEA models by identifying and reformulating tractable optimization models into conic optimization problems. We relax the uncorrelation assumption which is usually adopted in the existing chance constrained DEA models. We extend chance constrained DEA from the Gaussian model to a distributionally robust model in order to deal with datasets where distributions of random inputs and outputs are only partially known in advance. An example is provided to demonstrate the reformulated forms of chance constrained DEA.

Suggested Citation

  • Chen, Kun & Zhu, Joe, 2019. "Computational tractability of chance constrained data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1037-1046.
  • Handle: RePEc:eee:ejores:v:274:y:2019:i:3:p:1037-1046
    DOI: 10.1016/j.ejor.2018.10.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718308920
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.10.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mitropoulos, Panagiotis & Talias, Μichael A. & Mitropoulos, Ioannis, 2015. "Combining stochastic DEA with Bayesian analysis to obtain statistical properties of the efficiency scores: An application to Greek public hospitals," European Journal of Operational Research, Elsevier, vol. 243(1), pages 302-311.
    2. William Cooper & Zhimin Huang & Vedran Lelas & Susan Li & Ole Olesen, 1998. "Chance Constrained Programming Formulations for Stochastic Characterizations of Efficiency and Dominance in DEA," Journal of Productivity Analysis, Springer, vol. 9(1), pages 53-79, January.
    3. Thierry Post & Laurens Cherchye & Timo Kuosmanen, 2002. "Nonparametric Efficiency Estimation In Stochastic Environments," Operations Research, INFORMS, vol. 50(4), pages 645-655, August.
    4. Udhayakumar, A. & Charles, V. & Kumar, Mukesh, 2011. "Stochastic simulation based genetic algorithm for chance constrained data envelopment analysis problems," Omega, Elsevier, vol. 39(4), pages 387-397, August.
    5. Wei, Guiwu & Chen, Jian & Wang, Jiamin, 2014. "Stochastic efficiency analysis with a reliability consideration," Omega, Elsevier, vol. 48(C), pages 1-9.
    6. Huang, Zhimin & Li, Susan X., 1996. "Dominance stochastic models in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 95(2), pages 390-403, December.
    7. O. Olesen, 2006. "Comparing and Combining Two Approaches for Chance Constrained DEA," Journal of Productivity Analysis, Springer, vol. 26(2), pages 103-119, October.
    8. Cooper, William W. & Deng, H. & Huang, Zhimin & Li, Susan X., 2004. "Chance constrained programming approaches to congestion in stochastic data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 155(2), pages 487-501, June.
    9. A. Charnes & W. W. Cooper, 1963. "Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints," Operations Research, INFORMS, vol. 11(1), pages 18-39, February.
    10. Bruni, M.E. & Conforti, D. & Beraldi, P. & Tundis, E., 2009. "Probabilistically constrained models for efficiency and dominance in DEA," International Journal of Production Economics, Elsevier, vol. 117(1), pages 219-228, January.
    11. Kuzu, Kaan & Li, Wanxi, 2016. "Exploring supplier performance risk and the buyer's role using chance-constrained data envelopment analysisAuthor-Name: Ross, Anthony D," European Journal of Operational Research, Elsevier, vol. 250(3), pages 966-978.
    12. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    13. Talluri, Srinivas & Narasimhan, Ram & Nair, Anand, 2006. "Vendor performance with supply risk: A chance-constrained DEA approach," International Journal of Production Economics, Elsevier, vol. 100(2), pages 212-222, April.
    14. Vincent Charles & Ioannis E. Tsolas & Tatiana Gherman, 2018. "Satisficing data envelopment analysis: a Bayesian approach for peer mining in the banking sector," Annals of Operations Research, Springer, vol. 269(1), pages 81-102, October.
    15. Koenker, Roger & Mizera, Ivan, 2014. "Convex Optimization in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 60(i05).
    16. O. B. Olesen & N. C. Petersen, 1995. "Chance Constrained Efficiency Evaluation," Management Science, INFORMS, vol. 41(3), pages 442-457, March.
    17. Thierry Post, 2001. "Performance Evaluation in Stochastic Environments Using Mean-Variance Data Envelopment Analysis," Operations Research, INFORMS, vol. 49(2), pages 281-292, April.
    18. TAVANA, Madjid & KHANJANI SHIRAZ, Rashed & HATAMI-MARBINI, Adel, 2014. "A new chance-constrained DEA model with birandom input and output data," LIDAM Reprints CORE 2637, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. W W Cooper & H Deng & Z Huang & S X Li, 2002. "Chance constrained programming approaches to technical efficiencies and inefficiencies in stochastic data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(12), pages 1347-1356, December.
    20. Madjid Tavana & Rashed Khanjani Shiraz & Adel Hatami-Marbini, 2014. "A new chance-constrained DEA model with birandom input and output data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(12), pages 1824-1839, December.
    21. Huan Xu & Constantine Caramanis & Shie Mannor, 2012. "Optimization Under Probabilistic Envelope Constraints," Operations Research, INFORMS, vol. 60(3), pages 682-699, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Anyu & Lee, Andy & Chen, Yao, 2021. "Carbon allocation targeting with abatement capability: A firm-level study," International Journal of Production Economics, Elsevier, vol. 235(C).
    2. P. Beraldi & M. E. Bruni, 2020. "Efficiency evaluation under uncertainty: a stochastic DEA approach," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 519-538, December.
    3. Sun, Qinghe & Chen, Li & Meng, Qiang, 2022. "Evaluating port efficiency dynamics: A risk-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 333-347.
    4. Chao Lu & Jie Tao & Qiuxian An & Xiaodong Lai, 2020. "A second-order cone programming based robust data envelopment analysis model for the new-energy vehicle industry," Annals of Operations Research, Springer, vol. 292(1), pages 321-339, September.
    5. Xiao, Helu & Ren, Tiantian & Zhou, Zhongbao & Liu, Wenbin, 2021. "Parameter uncertainty in estimation of portfolio efficiency: Evidence from an interval diversification-consistent DEA approach," Omega, Elsevier, vol. 103(C).
    6. Adel Hatami-Marbini & Aliasghar Arabmaldar & John Otu Asu, 2022. "Robust productivity growth and efficiency measurement with undesirable outputs: evidence from the oil industry," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1213-1254, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rashed Khanjani Shiraz & Adel Hatami-Marbini & Ali Emrouznejad & Hirofumi Fukuyama, 2020. "Chance-constrained cost efficiency in data envelopment analysis model with random inputs and outputs," Operational Research, Springer, vol. 20(3), pages 1863-1898, September.
    2. Rashed Khanjani Shiraz & Madjid Tavana & Hirofumi Fukuyama, 2021. "A joint chance-constrained data envelopment analysis model with random output data," Operational Research, Springer, vol. 21(2), pages 1255-1277, June.
    3. Vincent Charles & Ioannis E. Tsolas & Tatiana Gherman, 2018. "Satisficing data envelopment analysis: a Bayesian approach for peer mining in the banking sector," Annals of Operations Research, Springer, vol. 269(1), pages 81-102, October.
    4. Alireza Amirteimoori & Biresh K. Sahoo & Saber Mehdizadeh, 2023. "Data envelopment analysis for scale elasticity measurement in the stochastic case: with an application to Indian banking," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-36, December.
    5. Khodadadipour, M. & Hadi-Vencheh, A. & Behzadi, M.H. & Rostamy-malkhalifeh, M., 2021. "Undesirable factors in stochastic DEA cross-efficiency evaluation: An application to thermal power plant energy efficiency," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 613-628.
    6. Udhayakumar, A. & Charles, V. & Kumar, Mukesh, 2011. "Stochastic simulation based genetic algorithm for chance constrained data envelopment analysis problems," Omega, Elsevier, vol. 39(4), pages 387-397, August.
    7. Ali Ebrahimnejad & Madjid Tavana & Seyed Hadi Nasseri & Omid Gholami, 2019. "A New Method for Solving Dual DEA Problems with Fuzzy Stochastic Data," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 147-170, January.
    8. Kao, Chiang & Liu, Shiang-Tai, 2019. "Stochastic efficiency measures for production units with correlated data," European Journal of Operational Research, Elsevier, vol. 273(1), pages 278-287.
    9. O. Olesen, 2006. "Comparing and Combining Two Approaches for Chance Constrained DEA," Journal of Productivity Analysis, Springer, vol. 26(2), pages 103-119, October.
    10. Bruni, M.E. & Conforti, D. & Beraldi, P. & Tundis, E., 2009. "Probabilistically constrained models for efficiency and dominance in DEA," International Journal of Production Economics, Elsevier, vol. 117(1), pages 219-228, January.
    11. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    12. Sun, Qinghe & Chen, Li & Meng, Qiang, 2022. "Evaluating port efficiency dynamics: A risk-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 333-347.
    13. Wu, Desheng (Dash) & Lee, Chi-Guhn, 2010. "Stochastic DEA with ordinal data applied to a multi-attribute pricing problem," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1679-1688, December.
    14. Wei, Guiwu & Chen, Jian & Wang, Jiamin, 2014. "Stochastic efficiency analysis with a reliability consideration," Omega, Elsevier, vol. 48(C), pages 1-9.
    15. Panagiotis Mitropoulos & Panagiotis D. Zervopoulos & Ioannis Mitropoulos, 2020. "Measuring performance in the presence of noisy data with targeted desirable levels: evidence from healthcare units," Annals of Operations Research, Springer, vol. 294(1), pages 537-566, November.
    16. Taylan G. Topcu & Konstantinos Triantis, 2022. "An ex-ante DEA method for representing contextual uncertainties and stakeholder risk preferences," Annals of Operations Research, Springer, vol. 309(1), pages 395-423, February.
    17. Mohammad Izadikhah & Reza Farzipoor Saen, 2023. "Developing a linear stochastic two-stage data envelopment analysis model for evaluating sustainability of supply chains: a case study in welding industry," Annals of Operations Research, Springer, vol. 322(1), pages 195-215, March.
    18. Chen, Zhongfei & Matousek, Roman & Wanke, Peter, 2018. "Chinese bank efficiency during the global financial crisis: A combined approach using satisficing DEA and Support Vector Machines☆," The North American Journal of Economics and Finance, Elsevier, vol. 43(C), pages 71-86.
    19. Panagiotis Mitropoulos & Alexandros Mitropoulos, 2023. "Evaluating efficiency and technology gaps of the national systems of entrepreneurship using stochastic DEA and club convergence," Operational Research, Springer, vol. 23(1), pages 1-28, March.
    20. P. Beraldi & M. E. Bruni, 2020. "Efficiency evaluation under uncertainty: a stochastic DEA approach," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 519-538, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:274:y:2019:i:3:p:1037-1046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.