IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v103y2021ics0305048320307118.html
   My bibliography  Save this article

Parameter uncertainty in estimation of portfolio efficiency: Evidence from an interval diversification-consistent DEA approach

Author

Listed:
  • Xiao, Helu
  • Ren, Tiantian
  • Zhou, Zhongbao
  • Liu, Wenbin

Abstract

Traditional data envelopment analysis (DEA) and diversification-consistent DEA, as the data-driven relative performance evaluation approaches, are widely used in the estimation of portfolio efficiency. To some extent, diversification-consistent DEA is more favored by researchers compared with traditional DEA for it deals fully with portfolio diversification. However, the existing studies assume that decision-makers can accurately estimate the statistical characteristics of portfolio returns and ignore the impact of parameter uncertainty on the portfolio efficiency and its ranking. In this paper, we construct three diversification-consistent DEA models under the mean-variance framework. We treat the expectation and covariance of portfolio return as interval values to characterize the parameter uncertainly in the proposed DEA models. And the bi-level programming models and the corresponding equivalent models are also provided to obtain the lower and upper bounds of portfolio efficiency. We select 30 American industry portfolios and perform some empirical analyses under different datasets to find out which model has better robustness in dealing with the impact of parameter uncertainty on the portfolio efficiency and its ranking. Finally, we provide some robustness tests to further verify the consistency of our findings.

Suggested Citation

  • Xiao, Helu & Ren, Tiantian & Zhou, Zhongbao & Liu, Wenbin, 2021. "Parameter uncertainty in estimation of portfolio efficiency: Evidence from an interval diversification-consistent DEA approach," Omega, Elsevier, vol. 103(C).
  • Handle: RePEc:eee:jomega:v:103:y:2021:i:c:s0305048320307118
    DOI: 10.1016/j.omega.2020.102357
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048320307118
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2020.102357?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Basso, Antonella & Funari, Stefania, 2001. "A data envelopment analysis approach to measure the mutual fund performance," European Journal of Operational Research, Elsevier, vol. 135(3), pages 477-492, December.
    2. Walter Briec & Kristiaan Kerstens & Octave Jokung, 2007. "Mean-Variance-Skewness Portfolio Performance Gauging: A General Shortage Function and Dual Approach," Management Science, INFORMS, vol. 53(1), pages 135-149, January.
    3. Antonella Basso & Stefania Funari, 2017. "The role of fund size in the performance of mutual funds assessed with DEA models," The European Journal of Finance, Taylor & Francis Journals, vol. 23(6), pages 457-473, May.
    4. Liu, Wenbin & Zhou, Zhongbao & Liu, Debin & Xiao, Helu, 2015. "Estimation of portfolio efficiency via DEA," Omega, Elsevier, vol. 52(C), pages 107-118.
    5. Michaud, Richard O. & Michaud, Robert O., 2008. "Efficient Asset Management: A Practical Guide to Stock Portfolio Optimization and Asset Allocation," OUP Catalogue, Oxford University Press, edition 2, number 9780195331912.
    6. Branda, Martin, 2015. "Diversification-consistent data envelopment analysis based on directional-distance measures," Omega, Elsevier, vol. 52(C), pages 65-76.
    7. Calvete, Herminia I. & Gale, Carmen & Mateo, Pedro M., 2008. "A new approach for solving linear bilevel problems using genetic algorithms," European Journal of Operational Research, Elsevier, vol. 188(1), pages 14-28, July.
    8. Gregoriou, Greg N. & Sedzro, Komlan & Zhu, Joe, 2005. "Hedge fund performance appraisal using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 164(2), pages 555-571, July.
    9. Wu, Desheng (Dash) & Lee, Chi-Guhn, 2010. "Stochastic DEA with ordinal data applied to a multi-attribute pricing problem," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1679-1688, December.
    10. Basso, Antonella & Funari, Stefania, 2014. "Constant and variable returns to scale DEA models for socially responsible investment funds," European Journal of Operational Research, Elsevier, vol. 235(3), pages 775-783.
    11. Kan, Raymond & Zhou, Guofu, 2007. "Optimal Portfolio Choice with Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(3), pages 621-656, September.
    12. Chen, Kun & Zhu, Joe, 2019. "Computational tractability of chance constrained data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1037-1046.
    13. Maria Scutellà & Raffaella Recchia, 2013. "Robust portfolio asset allocation and risk measures," Annals of Operations Research, Springer, vol. 204(1), pages 145-169, April.
    14. Aharoni, Gil & Grundy, Bruce & Zeng, Qi, 2013. "Stock returns and the Miller Modigliani valuation formula: Revisiting the Fama French analysis," Journal of Financial Economics, Elsevier, vol. 110(2), pages 347-357.
    15. Cooper, William W. & Deng, H. & Huang, Zhimin & Li, Susan X., 2004. "Chance constrained programming approaches to congestion in stochastic data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 155(2), pages 487-501, June.
    16. Maziar Salahi & Mehdi Toloo & Zeynab Hesabirad, 2019. "Robust Russell and enhanced Russell measures in DEA," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(8), pages 1275-1283, August.
    17. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    18. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    19. Murthi, B. P. S. & Choi, Yoon K. & Desai, Preyas, 1997. "Efficiency of mutual funds and portfolio performance measurement: A non-parametric approach," European Journal of Operational Research, Elsevier, vol. 98(2), pages 408-418, April.
    20. Sueyoshi, Toshiyuki, 2000. "Stochastic DEA for restructure strategy: an application to a Japanese petroleum company," Omega, Elsevier, vol. 28(4), pages 385-398, August.
    21. De Bondt, Werner F M & Thaler, Richard, 1985. "Does the Stock Market Overreact?," Journal of Finance, American Finance Association, vol. 40(3), pages 793-805, July.
    22. Toloo, Mehdi & Keshavarz, Esmaeil & Hatami-Marbini, Adel, 2018. "Dual-role factors for imprecise data envelopment analysis," Omega, Elsevier, vol. 77(C), pages 15-31.
    23. Tarnaud, Albane Christine & Leleu, Hervé, 2018. "Portfolio analysis with DEA: Prior to choosing a model," Omega, Elsevier, vol. 75(C), pages 57-76.
    24. S. Dempe & S. Franke, 2016. "On the solution of convex bilevel optimization problems," Computational Optimization and Applications, Springer, vol. 63(3), pages 685-703, April.
    25. Briec, Walter & Kerstens, Kristiaan, 2009. "Multi-horizon Markowitz portfolio performance appraisals: A general approach," Omega, Elsevier, vol. 37(1), pages 50-62, February.
    26. Lozano, Sebastián & Gutiérrez, Ester, 2008. "Data envelopment analysis of mutual funds based on second-order stochastic dominance," European Journal of Operational Research, Elsevier, vol. 189(1), pages 230-244, August.
    27. Kao, Chiang, 2006. "Interval efficiency measures in data envelopment analysis with imprecise data," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1087-1099, October.
    28. Despotis, Dimitris K. & Smirlis, Yiannis G., 2002. "Data envelopment analysis with imprecise data," European Journal of Operational Research, Elsevier, vol. 140(1), pages 24-36, July.
    29. Lamb, John D. & Tee, Kai-Hong, 2012. "Data envelopment analysis models of investment funds," European Journal of Operational Research, Elsevier, vol. 216(3), pages 687-696.
    30. Lamb, John D. & Tee, Kai-Hong, 2012. "Resampling DEA estimates of investment fund performance," European Journal of Operational Research, Elsevier, vol. 223(3), pages 834-841.
    31. Allevi, E. & Basso, A. & Bonenti, F. & Oggioni, G. & Riccardi, R., 2019. "Measuring the environmental performance of green SRI funds: A DEA approach," Energy Economics, Elsevier, vol. 79(C), pages 32-44.
    32. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    33. W. Briec & K. Kerstens & J. B. Lesourd, 2004. "Single-Period Markowitz Portfolio Selection, Performance Gauging, and Duality: A Variation on the Luenberger Shortage Function," Journal of Optimization Theory and Applications, Springer, vol. 120(1), pages 1-27, January.
    34. Martin Branda, 2016. "Mean-value at risk portfolio efficiency: approaches based on data envelopment analysis models with negative data and their empirical behaviour," 4OR, Springer, vol. 14(1), pages 77-99, March.
    35. Zhou, Zhongbao & Gao, Meng & Liu, Qing & Xiao, Helu, 2020. "Forecasting stock price movements with multiple data sources: Evidence from stock market in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    36. Jegadeesh, Narasimhan, 1990. "Evidence of Predictable Behavior of Security Returns," Journal of Finance, American Finance Association, vol. 45(3), pages 881-898, July.
    37. Ruiyue Lin & Zhiping Chen & Qianhui Hu & Zongxin Li, 2017. "Dynamic network DEA approach with diversification to multi-period performance evaluation of funds," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(3), pages 821-860, July.
    38. Zhou, Zhongbao & Xiao, Helu & Jin, Qianying & Liu, Wenbin, 2018. "DEA frontier improvement and portfolio rebalancing: An application of China mutual funds on considering sustainability information disclosure," European Journal of Operational Research, Elsevier, vol. 269(1), pages 111-131.
    39. A. Charnes & W. W. Cooper, 1963. "Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints," Operations Research, INFORMS, vol. 11(1), pages 18-39, February.
    40. R G Dyson & E A Shale, 2010. "Data envelopment analysis, operational research and uncertainty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 25-34, January.
    41. Banker, Rajiv D. & Gadh, Vandana M. & Gorr, Wilpen L., 1993. "A Monte Carlo comparison of two production frontier estimation methods: Corrected ordinary least squares and data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 67(3), pages 332-343, June.
    42. Zhou, Zhongbao & Jin, Qianying & Xiao, Helu & Wu, Qian & Liu, Wenbin, 2018. "Estimation of cardinality constrained portfolio efficiency via segmented DEA," Omega, Elsevier, vol. 76(C), pages 28-37.
    43. William W. Cooper & Kyung Sam Park & Gang Yu, 1999. "IDEA and AR-IDEA: Models for Dealing with Imprecise Data in DEA," Management Science, INFORMS, vol. 45(4), pages 597-607, April.
    44. Choi, Hyung-Suk & Min, Daiki, 2017. "Efficiency of well-diversified portfolios: Evidence from data envelopment analysis," Omega, Elsevier, vol. 73(C), pages 104-113.
    45. Branda, Martin, 2013. "Diversification-consistent data envelopment analysis with general deviation measures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 626-635.
    46. W W Cooper & H Deng & Z Huang & S X Li, 2002. "Chance constrained programming approaches to technical efficiencies and inefficiencies in stochastic data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(12), pages 1347-1356, December.
    47. Cheng, Si & Hameed, Allaudeen & Subrahmanyam, Avanidhar & Titman, Sheridan, 2017. "Short-Term Reversals: The Effects of Past Returns and Institutional Exits," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(1), pages 143-173, February.
    48. Hui Ding & Zhongbao Zhou & Helu Xiao & Chaoqun Ma & Wenbin Liu, 2014. "Performance Evaluation of Portfolios with Margin Requirements," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-8, March.
    49. Morey, Matthew R. & Morey, Richard C., 1999. "Mutual fund performance appraisals: a multi-horizon perspective with endogenous benchmarking," Omega, Elsevier, vol. 27(2), pages 241-258, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Helu & Zhou, Zhongbao & Ren, Teng & Liu, Wenbin, 2022. "Estimation of portfolio efficiency in nonconvex settings: A free disposal hull estimator with non-increasing returns to scale," Omega, Elsevier, vol. 111(C).
    2. Abdelouahed Hamdi & Arezou Karimi & Farshid Mehrdoust & Samir Brahim Belhaouari, 2022. "Portfolio Selection Problem Using CVaR Risk Measures Equipped with DEA, PSO, and ICA Algorithms," Mathematics, MDPI, vol. 10(15), pages 1-26, August.
    3. Sehgal, Ruchika & Sharma, Amita & Mansini, Renata, 2023. "Worst-case analysis of Omega-VaR ratio optimization model," Omega, Elsevier, vol. 114(C).
    4. Toloo, Mehdi & Mensah, Emmanuel Kwasi & Salahi, Maziar, 2022. "Robust optimization and its duality in data envelopment analysis," Omega, Elsevier, vol. 108(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Helu & Zhou, Zhongbao & Ren, Teng & Liu, Wenbin, 2022. "Estimation of portfolio efficiency in nonconvex settings: A free disposal hull estimator with non-increasing returns to scale," Omega, Elsevier, vol. 111(C).
    2. Zhou, Zhongbao & Xiao, Helu & Jin, Qianying & Liu, Wenbin, 2018. "DEA frontier improvement and portfolio rebalancing: An application of China mutual funds on considering sustainability information disclosure," European Journal of Operational Research, Elsevier, vol. 269(1), pages 111-131.
    3. Adam, Lukáš & Branda, Martin, 2021. "Risk-aversion in data envelopment analysis models with diversification," Omega, Elsevier, vol. 102(C).
    4. Lin, Ruiyue & Li, Zongxin, 2020. "Directional distance based diversification super-efficiency DEA models for mutual funds," Omega, Elsevier, vol. 97(C).
    5. Lin, Ruiyue & Liu, Qian, 2021. "Multiplier dynamic data envelopment analysis based on directional distance function: An application to mutual funds," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1043-1057.
    6. Kerstens, Kristiaan & Mazza, Paolo & Ren, Tiantian & Van de Woestyne, Ignace, 2022. "Multi-Time and Multi-Moment Nonparametric Frontier-Based Fund Rating: Proposal and Buy-and-Hold Backtesting Strategy," Omega, Elsevier, vol. 113(C).
    7. Martin Branda, 2016. "Mean-value at risk portfolio efficiency: approaches based on data envelopment analysis models with negative data and their empirical behaviour," 4OR, Springer, vol. 14(1), pages 77-99, March.
    8. Chang, Tsung-Sheng & Tone, Kaoru & Wu, Chen-Hui, 2021. "Nested dynamic network data envelopment analysis models with infinitely many decision making units for portfolio evaluation," European Journal of Operational Research, Elsevier, vol. 291(2), pages 766-781.
    9. Zeng, Ximei & Zhou, Zhongbao & Gong, Yeming & Liu, Wenbin, 2022. "A data envelopment analysis model integrated with portfolio theory for energy mix adjustment: Evidence in the power industry," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    10. Tarnaud, Albane Christine & Leleu, Hervé, 2018. "Portfolio analysis with DEA: Prior to choosing a model," Omega, Elsevier, vol. 75(C), pages 57-76.
    11. Andreu, Laura & Serrano, Miguel & Vicente, Luis, 2019. "Efficiency of mutual fund managers: A slacks-based manager efficiency index," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1180-1193.
    12. Ruiyue Lin & Zhiping Chen & Qianhui Hu & Zongxin Li, 2017. "Dynamic network DEA approach with diversification to multi-period performance evaluation of funds," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(3), pages 821-860, July.
    13. Liu, Wenbin & Zhou, Zhongbao & Liu, Debin & Xiao, Helu, 2015. "Estimation of portfolio efficiency via DEA," Omega, Elsevier, vol. 52(C), pages 107-118.
    14. Sepideh Kaffash & Marianna Marra, 2017. "Data envelopment analysis in financial services: a citations network analysis of banks, insurance companies and money market funds," Annals of Operations Research, Springer, vol. 253(1), pages 307-344, June.
    15. Choi, Hyung-Suk & Min, Daiki, 2017. "Efficiency of well-diversified portfolios: Evidence from data envelopment analysis," Omega, Elsevier, vol. 73(C), pages 104-113.
    16. Zhou, Zhongbao & Gao, Meng & Xiao, Helu & Wang, Rui & Liu, Wenbin, 2021. "Big data and portfolio optimization: A novel approach integrating DEA with multiple data sources," Omega, Elsevier, vol. 104(C).
    17. Branda, Martin, 2015. "Diversification-consistent data envelopment analysis based on directional-distance measures," Omega, Elsevier, vol. 52(C), pages 65-76.
    18. Zhou, Zhongbao & Jin, Qianying & Xiao, Helu & Wu, Qian & Liu, Wenbin, 2018. "Estimation of cardinality constrained portfolio efficiency via segmented DEA," Omega, Elsevier, vol. 76(C), pages 28-37.
    19. Lamb, John D. & Tee, Kai-Hong, 2012. "Data envelopment analysis models of investment funds," European Journal of Operational Research, Elsevier, vol. 216(3), pages 687-696.
    20. Branda, Martin, 2013. "Diversification-consistent data envelopment analysis with general deviation measures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 626-635.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:103:y:2021:i:c:s0305048320307118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.