IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v189y2008i3p1305-1316.html
   My bibliography  Save this article

Lower bounds for the earliness-tardiness scheduling problem on parallel machines with distinct due dates

Author

Listed:
  • Kedad-Sidhoum, Safia
  • Solis, Yasmin Rios
  • Sourd, Francis

Abstract

This paper addresses the parallel machine scheduling problem in which the jobs have distinct due dates with earliness and tardiness costs. New lower bounds are proposed for the problem, they can be classed into two families. First, two assignment-based lower bounds for the one-machine problem are generalized for the parallel machine case. Second, a time-indexed formulation of the problem is investigated in order to derive efficient lower bounds throught column generation or Lagrangean relaxation. A simple local search algorithm is also presented in order to derive an upper bound. Computational experiments compare these bounds for both the one machine and parallel machine problems and show that the gap between upper and lower bounds is about 1.5%.

Suggested Citation

  • Kedad-Sidhoum, Safia & Solis, Yasmin Rios & Sourd, Francis, 2008. "Lower bounds for the earliness-tardiness scheduling problem on parallel machines with distinct due dates," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1305-1316, September.
  • Handle: RePEc:eee:ejores:v:189:y:2008:i:3:p:1305-1316
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00602-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. DYER, Martin E. & WOLSEY, Laurence A., 1990. "Formulating the single machine sequencing problem with release dates as a mixed integer program," LIDAM Reprints CORE 878, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Francis Sourd, 2004. "The Continuous Assignment Problem and Its Application to Preemptive and Non-Preemptive Scheduling with Irregular Cost Functions," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 198-208, May.
    3. Hoogeveen, Han, 2005. "Multicriteria scheduling," European Journal of Operational Research, Elsevier, vol. 167(3), pages 592-623, December.
    4. Chen, Zhi-Long & Powell, Warren B., 1999. "A column generation based decomposition algorithm for a parallel machine just-in-time scheduling problem," European Journal of Operational Research, Elsevier, vol. 116(1), pages 220-232, July.
    5. J.M. van den Akker & C.A.J. Hurkens & M.W.P. Savelsbergh, 2000. "Time-Indexed Formulations for Machine Scheduling Problems: Column Generation," INFORMS Journal on Computing, INFORMS, vol. 12(2), pages 111-124, May.
    6. Peridy, Laurent & Pinson, Eric & Rivreau, David, 2003. "Using short-term memory to minimize the weighted number of late jobs on a single machine," European Journal of Operational Research, Elsevier, vol. 148(3), pages 591-603, August.
    7. Rolf H. Möhring & Andreas S. Schulz & Frederik Stork & Marc Uetz, 2003. "Solving Project Scheduling Problems by Minimum Cut Computations," Management Science, INFORMS, vol. 49(3), pages 330-350, March.
    8. SOUSA, Jorge P. & WOLSEY, Laurence A., 1992. "A time indexed formulation of non-preemptive single machine scheduling problems," LIDAM Reprints CORE 984, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Sourd, Francis, 2005. "Optimal timing of a sequence of tasks with general completion costs," European Journal of Operational Research, Elsevier, vol. 165(1), pages 82-96, August.
    10. J. A. Hoogeveen & S. L. van de Velde, 1996. "A Branch-and-Bound Algorithm for Single-Machine Earliness--Tardiness Scheduling with Idle Time," INFORMS Journal on Computing, INFORMS, vol. 8(4), pages 402-412, November.
    11. Nicholas G. Hall & Marc E. Posner, 2001. "Generating Experimental Data for Computational Testing with Machine Scheduling Applications," Operations Research, INFORMS, vol. 49(6), pages 854-865, December.
    12. Martin W. P. Savelsbergh & R. N. Uma & Joel Wein, 2005. "An Experimental Study of LP-Based Approximation Algorithms for Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 123-136, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Shouwei & Kang, Liying, 2010. "Online scheduling of malleable parallel jobs with setup times on two identical machines," European Journal of Operational Research, Elsevier, vol. 206(3), pages 555-561, November.
    2. Detienne, Boris & Pinson, Éric & Rivreau, David, 2010. "Lagrangian domain reductions for the single machine earliness-tardiness problem with release dates," European Journal of Operational Research, Elsevier, vol. 201(1), pages 45-54, February.
    3. Zhang, Hanxiao & Li, Yan-Fu, 2022. "Integrated optimization of test case selection and sequencing for reliability testing of the mainboard of Internet backbone routers," European Journal of Operational Research, Elsevier, vol. 299(1), pages 183-194.
    4. Yunpeng Pan & Zhe Liang, 2017. "Dual relaxations of the time-indexed ILP formulation for min–sum scheduling problems," Annals of Operations Research, Springer, vol. 249(1), pages 197-213, February.
    5. Francis Sourd, 2009. "New Exact Algorithms for One-Machine Earliness-Tardiness Scheduling," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 167-175, February.
    6. Kerem Bülbül & Halil Şen, 2017. "An exact extended formulation for the unrelated parallel machine total weighted completion time problem," Journal of Scheduling, Springer, vol. 20(4), pages 373-389, August.
    7. Halil Şen & Kerem Bülbül, 2015. "A Strong Preemptive Relaxation for Weighted Tardiness and Earliness/Tardiness Problems on Unrelated Parallel Machines," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 135-150, February.
    8. Arthur Kramer & Anand Subramanian, 2019. "A unified heuristic and an annotated bibliography for a large class of earliness–tardiness scheduling problems," Journal of Scheduling, Springer, vol. 22(1), pages 21-57, February.
    9. Lotte Berghman & Roel Leus & Frits Spieksma, 2014. "Optimal solutions for a dock assignment problem with trailer transportation," Annals of Operations Research, Springer, vol. 213(1), pages 3-25, February.
    10. Alves de Queiroz, Thiago & Iori, Manuel & Kramer, Arthur & Kuo, Yong-Hong, 2023. "Dynamic scheduling of patients in emergency departments," European Journal of Operational Research, Elsevier, vol. 310(1), pages 100-116.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francis Sourd, 2009. "New Exact Algorithms for One-Machine Earliness-Tardiness Scheduling," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 167-175, February.
    2. Yunpeng Pan & Zhe Liang, 2017. "Dual relaxations of the time-indexed ILP formulation for min–sum scheduling problems," Annals of Operations Research, Springer, vol. 249(1), pages 197-213, February.
    3. Natashia Boland & Riley Clement & Hamish Waterer, 2016. "A Bucket Indexed Formulation for Nonpreemptive Single Machine Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 14-30, February.
    4. Stéphane Dauzère-Pérès & Sigrid Lise Nonås, 2023. "An improved decision support model for scheduling production in an engineer-to-order manufacturer," 4OR, Springer, vol. 21(2), pages 247-300, June.
    5. Kerem Bülbül & Philip Kaminsky & Candace Yano, 2004. "Flow shop scheduling with earliness, tardiness, and intermediate inventory holding costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(3), pages 407-445, April.
    6. Baptiste, Philippe & Sadykov, Ruslan, 2010. "Time-indexed formulations for scheduling chains on a single machine: An application to airborne radars," European Journal of Operational Research, Elsevier, vol. 203(2), pages 476-483, June.
    7. Artur Alves Pessoa & Teobaldo Bulhões & Vitor Nesello & Anand Subramanian, 2022. "Exact Approaches for Single Machine Total Weighted Tardiness Batch Scheduling," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1512-1530, May.
    8. Pasquale Avella & Maurizio Boccia & Bernardo D’Auria, 2005. "Near-Optimal Solutions of Large-Scale Single-Machine Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 17(2), pages 183-191, May.
    9. Rachid Benmansour & Oliver Braun & Saïd Hanafi, 2019. "The single-processor scheduling problem with time restrictions: complexity and related problems," Journal of Scheduling, Springer, vol. 22(4), pages 465-471, August.
    10. Hoogeveen, Han, 2005. "Multicriteria scheduling," European Journal of Operational Research, Elsevier, vol. 167(3), pages 592-623, December.
    11. Giuseppe Lancia & Franca Rinaldi & Paolo Serafini, 2011. "A time-indexed LP-based approach for min-sum job-shop problems," Annals of Operations Research, Springer, vol. 186(1), pages 175-198, June.
    12. Lotte Berghman & Roel Leus & Frits Spieksma, 2014. "Optimal solutions for a dock assignment problem with trailer transportation," Annals of Operations Research, Springer, vol. 213(1), pages 3-25, February.
    13. Martin W. P. Savelsbergh & R. N. Uma & Joel Wein, 2005. "An Experimental Study of LP-Based Approximation Algorithms for Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 123-136, February.
    14. Nurre, Sarah G. & Cavdaroglu, Burak & Mitchell, John E. & Sharkey, Thomas C. & Wallace, William A., 2012. "Restoring infrastructure systems: An integrated network design and scheduling (INDS) problem," European Journal of Operational Research, Elsevier, vol. 223(3), pages 794-806.
    15. Louis-Philippe Bigras & Michel Gamache & Gilles Savard, 2008. "Time-Indexed Formulations and the Total Weighted Tardiness Problem," INFORMS Journal on Computing, INFORMS, vol. 20(1), pages 133-142, February.
    16. Pasquale Avella & Maurizio Boccia & Carlo Mannino & Igor Vasilyev, 2017. "Time-Indexed Formulations for the Runway Scheduling Problem," Transportation Science, INFORMS, vol. 51(4), pages 1196-1209, November.
    17. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    18. Balasubramanian, Hari & Fowler, John & Keha, Ahmet & Pfund, Michele, 2009. "Scheduling interfering job sets on parallel machines," European Journal of Operational Research, Elsevier, vol. 199(1), pages 55-67, November.
    19. Berghman, Lotte & Leus, Roel, 2015. "Practical solutions for a dock assignment problem with trailer transportation," European Journal of Operational Research, Elsevier, vol. 246(3), pages 787-799.
    20. Averbakh, Igor & Pereira, Jordi, 2015. "Network construction problems with due dates," European Journal of Operational Research, Elsevier, vol. 244(3), pages 715-729.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:189:y:2008:i:3:p:1305-1316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.