Advanced Search
MyIDEAS: Login to save this article or follow this journal

Random marginal and random removal values

Contents:

Author Info

  • Emilio Calvo

    ()

Abstract

We propose two variations of the non-cooperative bargaining model for games in coalitional form, introduced by Hart and Mas-Colell (1996a). These strategic games implement, in the limit, two new NTU-values: The random marginal and the random removal values. The main characteristic of these proposals is that they always select a unique payoff allocation in NTU-games. The random marginal value coincides with the Consistent NTU-value (Maschler and Owen, 1989) for hyperplane games, and with the Shapley value for TU games (Shapley, 1953). The random removal coincides with the solidarity value (Novak and Radzik, 1994) in TU-games. In large games it is showed that, in the special class of market games, the random marginal coincides with the Shapley NTU-value (Shapley,1969), and that the random removal coincides with the equal split solution.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.1007/s00182-008-0132-7
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Springer in its journal International Journal of Game Theory.

Volume (Year): 37 (2008)
Issue (Month): 4 (December)
Pages: 533-563

as in new window
Handle: RePEc:spr:jogath:v:37:y:2008:i:4:p:533-563

Contact details of provider:
Web page: http://link.springer.de/link/service/journals/00182/index.htm

Order Information:
Web: http://link.springer.de/orders.htm

Related research

Keywords: Shapley value; Solidarity value; NTU-games; Large market games; C71;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Sergiu Hart & Andreu Mas-Colell, 1994. "Bargaining and value," Economics Working Papers 114, Department of Economics and Business, Universitat Pompeu Fabra, revised Feb 1995.
  2. Oliver Hart & John Moore, 1988. "Property Rights and the Nature of the Firm," Working papers 495, Massachusetts Institute of Technology (MIT), Department of Economics.
  3. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
  4. Calvo, Emilio & Santos, Juan Carlos, 1997. "Potentials in cooperative TU-games," Mathematical Social Sciences, Elsevier, vol. 34(2), pages 175-190, October.
  5. Nowak, Andrzej S & Radzik, Tadeusz, 1994. "A Solidarity Value for n-Person Transferable Utility Games," International Journal of Game Theory, Springer, vol. 23(1), pages 43-48.
  6. Shapley, Lloyd S & Shubik, Martin, 1969. "Pure Competition, Coalitional Power, and Fair Division," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 10(3), pages 337-62, October.
  7. repec:cup:cbooks:9780521343831 is not listed on IDEAS
  8. Kalai, Ehud & Smorodinsky, Meir, 1975. "Other Solutions to Nash's Bargaining Problem," Econometrica, Econometric Society, vol. 43(3), pages 513-18, May.
  9. Ariel Rubinstein, 2010. "Perfect Equilibrium in a Bargaining Model," Levine's Working Paper Archive 252, David K. Levine.
  10. Hart, Sergiu, 2002. "Values of perfectly competitive economies," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 57, pages 2169-2184 Elsevier.
  11. David Pérez-Castrillo & David Wettstein, . "Bidding For The Surplus: A Non-Cooperative Approach To The Shapley Value," UFAE and IAE Working Papers 461.00, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
  12. Anbarci, Nejat & Bigelow, John P., 1994. "The area monotonic solution to the cooperative bargaining problem," Mathematical Social Sciences, Elsevier, vol. 28(2), pages 133-142, October.
  13. Emilio Calvo & Iñaki Garci´a & José M. Zarzuelo, 2001. "Replication invariance on NTU games," International Journal of Game Theory, Springer, vol. 29(4), pages 473-486.
  14. Hart, Sergiu & Mas-Colell, Andreu, 1996. "Harsanyi Values of Large Economies: Nonequivalence to Competitive Equilibria," Games and Economic Behavior, Elsevier, vol. 13(1), pages 74-99, March.
  15. Ehud Kalai & Dov Samet, 1983. "On Weighted Shapley Values," Discussion Papers 602, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  16. AUMANN, Robert J., . "Values of markets with a continuum of traders," CORE Discussion Papers RP -228, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  17. Maschler, M & Owen, G, 1989. "The Consistent Shapley Value for Hyperplane Games," International Journal of Game Theory, Springer, vol. 18(4), pages 389-407.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Radzik, Tadeusz, 2013. "Is the solidarity value close to the equal split value?," Mathematical Social Sciences, Elsevier, vol. 65(3), pages 195-202.
  2. Radzik, Tadeusz & Driessen, Theo, 2013. "On a family of values for TU-games generalizing the Shapley value," Mathematical Social Sciences, Elsevier, vol. 65(2), pages 105-111.
  3. Kamijo, Yoshio & Kongo, Takumi, 2012. "Whose deletion does not affect your payoff? The difference between the Shapley value, the egalitarian value, the solidarity value, and the Banzhaf value," European Journal of Operational Research, Elsevier, vol. 216(3), pages 638-646.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:37:y:2008:i:4:p:533-563. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.