Advanced Search
MyIDEAS: Login to save this article or follow this journal

Whose deletion does not affect your payoff? The difference between the Shapley value, the egalitarian value, the solidarity value, and the Banzhaf value

Contents:

Author Info

  • Kamijo, Yoshio
  • Kongo, Takumi

Abstract

This study provides a unified axiomatic characterization method of one-point solutions for cooperative games with transferable utilities. Any one-point solution that satisfies efficiency, the balanced cycle contributions property (BCC), and the axioms related to invariance under a player deletion is characterized as a corollary of our general result. BCC is a weaker requirement than the well-known balanced contributions property. Any one-point solution that is both symmetric and linear satisfies BCC. The invariance axioms necessitate that the deletion of a specific player from games does not affect the other players’ payoffs, and this deletion is different with respect to solutions. As corollaries of the above characterization result, we are able to characterize the well-known one-point solutions, the Shapley, egalitarian, and solidarity values, in a unified manner. We also studied characterizations of an inefficient one-point solution, the Banzhaf value that is a well-known alternative to the Shapley value.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/pii/S0377221711007302
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal European Journal of Operational Research.

Volume (Year): 216 (2012)
Issue (Month): 3 ()
Pages: 638-646

as in new window
Handle: RePEc:eee:ejores:v:216:y:2012:i:3:p:638-646

Contact details of provider:
Web page: http://www.elsevier.com/locate/eor

Related research

Keywords: Game theory; Axiomatization; Shapley value; Egalitarian value; Solidarity value; Banzhaf value;

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. E. Algaba & J. M. Bilbao & R. van den Brink & A. Jiménez-Losada, 2004. "An axiomatization of the Banzhaf value for cooperative games on antimatroids," Computational Statistics, Springer, vol. 59(1), pages 147-166, 02.
  2. Kalai, Ehud & Samet, Dov, 1985. "Monotonic Solutions to General Cooperative Games," Econometrica, Econometric Society, vol. 53(2), pages 307-27, March.
  3. Calvo, Emilio, 2006. "Random Marginal and Random Removal values," MPRA Paper 142, University Library of Munich, Germany.
  4. André Casajus, 2011. "Marginality, differential marginality, and the Banzhaf value," Theory and Decision, Springer, vol. 71(3), pages 365-372, September.
  5. René Brink & Yukihiko Funaki, 2009. "Axiomatizations of a Class of Equal Surplus Sharing Solutions for TU-Games," Theory and Decision, Springer, vol. 67(3), pages 303-340, September.
  6. Arin, J. & Feltkamp, V., 2012. "Coalitional games: Monotonicity and core," European Journal of Operational Research, Elsevier, vol. 216(1), pages 208-213.
  7. Lorenzo-Freire, S. & Alonso-Meijide, J.M. & Casas-Mendez, B. & Fiestras-Janeiro, M.G., 2007. "Characterizations of the Deegan-Packel and Johnston power indices," European Journal of Operational Research, Elsevier, vol. 177(1), pages 431-444, February.
  8. Feltkamp, Vincent, 1995. "Alternative Axiomatic Characterizations of the Shapley and Banzhaf Values," International Journal of Game Theory, Springer, vol. 24(2), pages 179-86.
  9. Ehud Kalai, 1977. "Proportional Solutions to Bargaining Situations: Interpersonal Utility Comparisons," Discussion Papers 179, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  10. Gómez-Rúa, María & Vidal-Puga, Juan, 2008. "The axiomatic approach to three values in games with coalition structure," MPRA Paper 8904, University Library of Munich, Germany.
  11. van den Brink, Rene, 2007. "Null or nullifying players: The difference between the Shapley value and equal division solutions," Journal of Economic Theory, Elsevier, vol. 136(1), pages 767-775, September.
  12. Sanchez S., Francisco, 1997. "Balanced Contributions Axiom in the Solution of Cooperative Games," Games and Economic Behavior, Elsevier, vol. 20(2), pages 161-168, August.
  13. Nowak, Andrzej S & Radzik, Tadeusz, 1994. "A Solidarity Value for n-Person Transferable Utility Games," International Journal of Game Theory, Springer, vol. 23(1), pages 43-48.
  14. Ruiz, Luis M. & Valenciano, Federico & Zarzuelo, Jose M., 1998. "The Family of Least Square Values for Transferable Utility Games," Games and Economic Behavior, Elsevier, vol. 24(1-2), pages 109-130, July.
  15. André Casajus, 2011. "Differential marginality, van den Brink fairness, and the Shapley value," Theory and Decision, Springer, vol. 71(2), pages 163-174, August.
  16. Andrzej S. Nowak & Tadeusz Radzik, 2000. "note: An alternative characterization of the weighted Banzhaf value," International Journal of Game Theory, Springer, vol. 29(1), pages 127-132.
  17. Theo Driessen, 2010. "Associated consistency and values for TU games," International Journal of Game Theory, Springer, vol. 39(3), pages 467-482, July.
  18. Rodica Branzei & Vito Fragnelli & Ana Meca & Stef Tijs, 2009. "On Cooperative Games Related To Market Situations And Auctions," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 11(04), pages 459-470.
  19. Lehrer, E, 1988. "An Axiomatization of the Banzhaf Value," International Journal of Game Theory, Springer, vol. 17(2), pages 89-99.
  20. Yoshio Kamijo & Takumi Kongo, 2010. "Axiomatization of the Shapley value using the balanced cycle contributions property," International Journal of Game Theory, Springer, vol. 39(4), pages 563-571, October.
  21. Tijs, Stef & Borm, Peter & Lohmann, Edwin & Quant, Marieke, 2011. "An average lexicographic value for cooperative games," European Journal of Operational Research, Elsevier, vol. 213(1), pages 210-220, August.
  22. Hart, Sergiu & Mas-Colell, Andreu, 1989. "Potential, Value, and Consistency," Econometrica, Econometric Society, vol. 57(3), pages 589-614, May.
  23. Haller, Hans, 1994. "Collusion Properties of Values," International Journal of Game Theory, Springer, vol. 23(3), pages 261-81.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2012. "Axioms of invariance for TU-games," MPRA Paper 41530, University Library of Munich, Germany.
  2. Lee, Joosung & Driessen, Theo S.H., 2012. "Sequentially two-leveled egalitarianism for TU games: Characterization and application," European Journal of Operational Research, Elsevier, vol. 220(3), pages 736-743.
  3. Sylvain Béal & Eric Rémila & Philippe Solal, 2013. "Preserving or removing special players: what keeps your payoff unchanged in TU-games?," Working Papers 2013-09, CRESE.
  4. Casajus, André & Huettner, Frank, 2014. "On a class of solidarity values," European Journal of Operational Research, Elsevier, vol. 236(2), pages 583-591.
  5. Casajus, André & Huettner, Frank, 2014. "Null, nullifying, or dummifying players: The difference between the Shapley value, the equal division value, and the equal surplus division value," Economics Letters, Elsevier, vol. 122(2), pages 167-169.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:216:y:2012:i:3:p:638-646. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.