Advanced Search
MyIDEAS: Login to save this article or follow this journal

Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values

Contents:

Author Info

  • René Brink

    ()

  • Yukihiko Funaki

    ()

  • Yuan Ju

    ()

Abstract

One of the main issues in economic allocation problems is the trade-off between marginalism and egalitarianism. In the context of cooperative games this trade-off can be framed as one of choosing to allocate according to the Shapley value or the equal division solution. In this paper we provide three different characterizations of egalitarian Shapley values being convex combinations of the Shapley value and the equal division solution. First, from the perspective of a variable player set, we show that all these solutions satisfy the same reduced game consistency. Second, on a fixed player set, we characterize this class of solutions using monotonicity properties. Finally, towards a strategic foundation, we provide a non-cooperative implementation for these solutions which only differ in the probability of breakdown at a certain stage of the game. These characterizations discover fundamental differences as well as intriguing connections between marginalism and egalitarianism. Copyright The Author(s) 2013

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.1007/s00355-011-0634-2
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Springer in its journal Social Choice and Welfare.

Volume (Year): 40 (2013)
Issue (Month): 3 (March)
Pages: 693-714

as in new window
Handle: RePEc:spr:sochwe:v:40:y:2013:i:3:p:693-714

Contact details of provider:
Web page: http://link.springer.de/link/service/journals/00355/index.htm

Order Information:
Web: http://link.springer.de/orders.htm

Related research

Keywords:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Sen, Amartya Kumar, 1970. "The Impossibility of a Paretian Liberal," Scholarly Articles 3612779, Harvard University Department of Economics.
  2. Theo Driessen & Elena Yanovskaya, 2002. "Note On linear consistency of anonymous values for TU-games," International Journal of Game Theory, Springer, vol. 30(4), pages 601-609.
  3. Maschler, M & Owen, G, 1989. "The Consistent Shapley Value for Hyperplane Games," International Journal of Game Theory, Springer, vol. 18(4), pages 389-407.
  4. Graham, Daniel A & Marshall, Robert C & Richard, Jean-Francois, 1990. "Differential Payments within a Bidder Coalition and the Shapley Value," American Economic Review, American Economic Association, vol. 80(3), pages 493-510, June.
  5. Maniquet, Francois, 2003. "A characterization of the Shapley value in queueing problems," Journal of Economic Theory, Elsevier, vol. 109(1), pages 90-103, March.
  6. Ju, Y. & Borm, P.E.M. & Ruys, P.H.M., 2004. "The Consensus Value: A New Solution Concept for Cooperative Games," Discussion Paper 2004-50, Tilburg University, Center for Economic Research.
  7. Hart, Sergiu & Mas-Colell, Andreu, 1989. "Potential, Value, and Consistency," Econometrica, Econometric Society, vol. 57(3), pages 589-614, May.
  8. Dutta, Bhaskar & Ray, Debraj, 1989. "A Concept of Egalitarianism under Participation Constraints," Econometrica, Econometric Society, vol. 57(3), pages 615-35, May.
  9. van den Brink, Rene, 2007. "Null or nullifying players: The difference between the Shapley value and equal division solutions," Journal of Economic Theory, Elsevier, vol. 136(1), pages 767-775, September.
  10. Gul, Faruk, 1989. "Bargaining Foundations of Shapley Value," Econometrica, Econometric Society, vol. 57(1), pages 81-95, January.
  11. Ju, Y. & Wettstein, D., 2006. "Implementing Cooperative Solution Concepts: A Generalized Bidding Approach," Discussion Paper 2006-42, Tilburg University, Center for Economic Research.
  12. S. C. Littlechild & G. Owen, 1973. "A Simple Expression for the Shapley Value in a Special Case," Management Science, INFORMS, vol. 20(3), pages 370-372, November.
  13. David Pérez-Castrillo & David Wettstein, . "Bidding For The Surplus: A Non-Cooperative Approach To The Shapley Value," UFAE and IAE Working Papers 461.00, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
  14. Hart, Sergiu & Mas-Colell, Andreu, 1996. "Bargaining and Value," Econometrica, Econometric Society, vol. 64(2), pages 357-80, March.
  15. Sen, Amartya, 1970. "The Impossibility of a Paretian Liberal," Journal of Political Economy, University of Chicago Press, vol. 78(1), pages 152-57, Jan.-Feb..
  16. Sergiu Hart, 2006. "Shapley Value," Discussion Paper Series dp421, The Center for the Study of Rationality, Hebrew University, Jerusalem.
  17. Curiel, I. & Pederzoli, G. & Tijs, S.H., 1989. "Sequencing games," Open Access publications from Tilburg University urn:nbn:nl:ui:12-154243, Tilburg University.
  18. Curiel, Imma & Pederzoli, Giorgio & Tijs, Stef, 1989. "Sequencing games," European Journal of Operational Research, Elsevier, vol. 40(3), pages 344-351, June.
  19. René van den Brink & Yukihiko Funaki, 2004. "Axiomatizations of a Class of Equal Surplus Sharing Solutions for Cooperative Games with Transferable Utility," Tinbergen Institute Discussion Papers 04-136/1, Tinbergen Institute.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Marcin Malawski, 2013. "“Procedural” values for cooperative games," International Journal of Game Theory, Springer, vol. 42(1), pages 305-324, February.
  2. van den Brink, René & van der Laan, Gerard & Moes, Nigel, 2013. "A strategic implementation of the Average Tree solution for cycle-free graph games," Journal of Economic Theory, Elsevier, vol. 148(6), pages 2737-2748.
  3. Rene van den Brink & Youngsub Chun & Yukihiko Funaki & Boram Park, 2012. "Consistency, Population Solidarity, and Egalitarian Solutions for TU-Games," Tinbergen Institute Discussion Papers 12-136/II, Tinbergen Institute.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:40:y:2013:i:3:p:693-714. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.