IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0260129.html
   My bibliography  Save this article

The Impact of Disease Control Measures on the Spread of COVID-19 in the Province of Sindh, Pakistan

Author

Listed:
  • Bilal Ahmed Usmani
  • Mustafain Ali
  • Muhammad Abul Hasan
  • Amna Rehana Siddiqui
  • Sameen Siddiqi
  • Aaron Guanliang Lim
  • Saad Ahmed Qazi

Abstract

The province of Sindh reported the first COVID-19 case in Pakistan on 26th February 2020. The Government of Sindh has employed numerous control measures to limit its spread. However, for low-and middle-income countries such as Pakistan, the management protocols for controlling a pandemic are not always as definitive as they would be in other developed nations. Given the dire socio-economic conditions of Sindh, continuation of province-wise lockdowns may inadvertently cause a potential economic breakdown. By using a data driven SEIR modelling framework, this paper describes the evolution of the epidemic projections because of government control measures. The data from reported COVID-19 prevalence and google mobility is used to parameterize the model at different time points. These time points correspond to the government’s call for advice on the prerequisite actions required to curtail the spread of COVID-19 in Sindh. Our model predicted the epidemic peak to occur by 18th June 2020 with approximately 3500 reported cases at that peak, this projection correlated with the actual recorded peak during the first wave of the disease in Sindh. The impact of the governmental control actions and religious ceremonies on the epidemic profile during this first wave of COVID-19 are clearly reflected in the model outcomes through variations in the epidemic peaks. We also report these variations by displaying the trajectory of the epidemics had the control measures been guided differently; the epidemic peak may have occurred as early as the end of May 2020 with approximately 5000 reported cases per day had there been no control measures and as late as August 2020 with only around 2000 cases at the peak had the lockdown continued, nearly flattening the epidemic curve.

Suggested Citation

  • Bilal Ahmed Usmani & Mustafain Ali & Muhammad Abul Hasan & Amna Rehana Siddiqui & Sameen Siddiqi & Aaron Guanliang Lim & Saad Ahmed Qazi, 2021. "The Impact of Disease Control Measures on the Spread of COVID-19 in the Province of Sindh, Pakistan," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-13, November.
  • Handle: RePEc:plo:pone00:0260129
    DOI: 10.1371/journal.pone.0260129
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260129
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0260129&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0260129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tyagi, Swati & Martha, Subash C. & Abbas, Syed & Debbouche, Amar, 2021. "Mathematical modeling and analysis for controlling the spread of infectious diseases," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    3. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    4. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    5. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    6. Christel Kamp & Mathieu Moslonka-Lefebvre & Samuel Alizon, 2013. "Epidemic Spread on Weighted Networks," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-10, December.
    7. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    8. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    9. Ofosuhene O Apenteng & Noor Azina Ismail, 2014. "The Impact of the Wavelet Propagation Distribution on SEIRS Modeling with Delay," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    10. Miguel Navascués & Costantino Budroni & Yelena Guryanova, 2021. "Disease control as an optimization problem," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-32, September.
    11. Frank Daumann & Florian Follert & Werner Gleißner & Endre Kamarás & Chantal Naumann, 2021. "Political Decision Making in the COVID-19 Pandemic: The Case of Germany from the Perspective of Risk Management," IJERPH, MDPI, vol. 19(1), pages 1-23, December.
    12. M Gabriela M Gomes & Marc Lipsitch & Andrew R Wargo & Gael Kurath & Carlota Rebelo & Graham F Medley & Antonio Coutinho, 2014. "A Missing Dimension in Measures of Vaccination Impacts," PLOS Pathogens, Public Library of Science, vol. 10(3), pages 1-3, March.
    13. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    14. Carnehl, Christoph & Fukuda, Satoshi & Kos, Nenad, 2023. "Epidemics with behavior," Journal of Economic Theory, Elsevier, vol. 207(C).
    15. Sterck, Olivier, 2016. "Natural resources and the spread of HIV/AIDS: Curse or blessing?," Social Science & Medicine, Elsevier, vol. 150(C), pages 271-278.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0260129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.