IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v41y2014i3p611-631.html
   My bibliography  Save this article

Envisioning an emission diet: application of travel demand mechanisms to facilitate policy decision making

Author

Listed:
  • Timothy Welch
  • Sabyasachee Mishra

Abstract

Emission reduction strategies are gaining attention as planning agencies work towards adherence to air quality conformity standards. Policymakers struggling to reduce greenhouse gases (GHG) must grapple with a growing number of travel demand policies. To consider any of these emerging demand mechanisms as a viable option to meet emission targets, planners and policymakers need tools to better understand the implications of such policies on travel behavior. In this paper we present an integrated multimodal travel demand and emission model of four policy strategies; presenting GHG and air pollutant reduction results at a very detailed level. Multiple policy outcomes are compared within a single modeling framework and study area. The results reveal that while no one demand mechanism is likely to reduce emissions to a level that meets policy-maker’s goals; a first-best pricing strategy that incorporates marginal social costs is the most effective emission reduction mechanism. Implementing such a mechanism may offer total emission reductions of up to 24 %. However, the efficacy of this strategy must be weighed against difficulties of establishing efficient pricing, a costly implementation, and substantial negative impacts to non-highway facilities. Decision makers must select a mixture of pricing and land use strategies to achieve emission goals on all road facilities. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Timothy Welch & Sabyasachee Mishra, 2014. "Envisioning an emission diet: application of travel demand mechanisms to facilitate policy decision making," Transportation, Springer, vol. 41(3), pages 611-631, May.
  • Handle: RePEc:kap:transp:v:41:y:2014:i:3:p:611-631
    DOI: 10.1007/s11116-013-9511-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11116-013-9511-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-013-9511-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tol, Richard S. J., 2005. "The marginal damage costs of carbon dioxide emissions: an assessment of the uncertainties," Energy Policy, Elsevier, vol. 33(16), pages 2064-2074, November.
    2. Ichinohe, Masayuki & Endo, Eiichi, 2006. "Analysis of the vehicle mix in the passenger-car sector in Japan for CO2 emissions reduction by a MARKAL model," Applied Energy, Elsevier, vol. 83(10), pages 1047-1061, October.
    3. Kang‐Rae Ma & David Banister, 2006. "Excess Commuting: A Critical Review," Transport Reviews, Taylor & Francis Journals, vol. 26(6), pages 749-767, May.
    4. Deakin, Elizabeth & Harvey, Greig & Pozdena, Randall & Yarema, Geoffrey, 1996. "Transportation Pricing Strategies for California: An Assessment of Congestion, Emissions, Energy. And Equity Impacts," University of California Transportation Center, Working Papers qt723002kt, University of California Transportation Center.
    5. Shanjun Li & Joshua Linn & Erich Muehlegger, 2014. "Gasoline Taxes and Consumer Behavior," American Economic Journal: Economic Policy, American Economic Association, vol. 6(4), pages 302-342, November.
    6. Ian W. H. Parry & Kenneth A. Small, 2005. "Does Britain or the United States Have the Right Gasoline Tax?," American Economic Review, American Economic Association, vol. 95(4), pages 1276-1289, September.
    7. Yoram Shiftan & John Suhrbier, 2002. "The analysis of travel and emission impacts of travel demand management strategies using activity-based models," Transportation, Springer, vol. 29(2), pages 145-168, May.
    8. Fullerton, Don & West, Sarah E., 2002. "Can Taxes on Cars and on Gasoline Mimic an Unavailable Tax on Emissions?," Journal of Environmental Economics and Management, Elsevier, vol. 43(1), pages 135-157, January.
    9. Ian W. H. Parry & Margaret Walls & Winston Harrington, 2007. "Automobile Externalities and Policies," Journal of Economic Literature, American Economic Association, vol. 45(2), pages 373-399, June.
    10. Jordan Carroll-Larson & Arthur Caplan, 2009. "Estimating the effectiveness of a vehicle miles travelled tax in reducing particulate matter emissions," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 52(3), pages 315-344.
    11. Daniel, Joseph I. & Bekka, Khalid, 2000. "The Environmental Impact of Highway Congestion Pricing," Journal of Urban Economics, Elsevier, vol. 47(2), pages 180-215, March.
    12. Hamilton, Bruce W, 1989. "Wasteful Commuting Again," Journal of Political Economy, University of Chicago Press, vol. 97(6), pages 1497-1504, December.
    13. Johnston, Robert & de la Barra, Thomas, 2000. "Comprehensive Regional Modeling for Long-Range Planning: Linking Integrated Urban Models and Geographic Information Systems," Institute of Transportation Studies, Working Paper Series qt0f97v7sn, Institute of Transportation Studies, UC Davis.
    14. Muniz, Ivan & Galindo, Anna, 2005. "Urban form and the ecological footprint of commuting. The case of Barcelona," Ecological Economics, Elsevier, vol. 55(4), pages 499-514, December.
    15. Hamilton, Bruce W, 1982. "Wasteful Commuting," Journal of Political Economy, University of Chicago Press, vol. 90(5), pages 1035-1051, October.
    16. William P. Anderson & Pavlos S. Kanaroglou & Eric J. Miller, 1996. "Urban Form, Energy and the Environment: A Review of Issues, Evidence and Policy," Urban Studies, Urban Studies Journal Limited, vol. 33(1), pages 7-35, February.
    17. Camagni, Roberto & Gibelli, Maria Cristina & Rigamonti, Paolo, 2002. "Urban mobility and urban form: the social and environmental costs of different patterns of urban expansion," Ecological Economics, Elsevier, vol. 40(2), pages 199-216, February.
    18. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
    19. Johnston, Robert A. & de la Barra, Tomas, 2000. "Comprehensive regional modeling for long-range planning: linking integrated urban models and geographic information systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(2), pages 125-136, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haque, Khademul & Mishra, Sabyasachee & Golias, Mihalis M., 2021. "Multi-period transportation network investment decision making and policy implications using econometric framework," Research in Transportation Economics, Elsevier, vol. 89(C).
    2. Mittelman, Gur & Kariv, Yaron & Cohen, Yuval & Avineri, Erel, 2022. "Techno-economic analysis of energy supply to personal rapid transit (PRT) systems," Applied Energy, Elsevier, vol. 306(PB).
    3. Korsu, Emre & Le Néchet, Florent, 2017. "Would fewer people drive to work in a city without excess commuting? Explorations in the Paris metropolitan area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 259-274.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergeaud, Antonin & Raimbault, Juste, 2020. "An empirical analysis of the spatial variability of fuel prices in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 131-143.
    2. Montag, Josef, 2015. "The simple economics of motor vehicle pollution: A case for fuel tax," Energy Policy, Elsevier, vol. 85(C), pages 138-149.
    3. Fu, Shihe & Gu, Yizhen, 2017. "Highway toll and air pollution: Evidence from Chinese cities," Journal of Environmental Economics and Management, Elsevier, vol. 83(C), pages 32-49.
    4. Santos, Georgina, 2017. "Road fuel taxes in Europe: Do they internalize road transport externalities?," Transport Policy, Elsevier, vol. 53(C), pages 120-134.
    5. Yoshida, Jun & Kono, Tatsuhito, 2020. "Optimal Car-related Taxes and Pricing in Beijing Considering the Marginal Cost of Public Funds," MPRA Paper 101728, University Library of Munich, Germany.
    6. Rik L. Rozendaal & Herman R. J. Vollebergh, 2021. "Policy-Induced Innovation in Clean Technologies: Evidence from the Car Market," CESifo Working Paper Series 9422, CESifo.
    7. Andrea CIRILLI & Paolo VENERI, 2010. "Spatial Structure and CO2 Emissions Due to Commuting: an Analysis on Italian Urban Areas," Working Papers 353, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    8. Amit Agarwal & Benjamin Kickhöfer, 2018. "The correlation of externalities in marginal cost pricing: lessons learned from a real-world case study," Transportation, Springer, vol. 45(3), pages 849-873, May.
    9. Niedzielski, Michael A. & Horner, Mark W. & Xiao, Ningchuan, 2013. "Analyzing scale independence in jobs-housing and commute efficiency metrics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 58(C), pages 129-143.
    10. Allcott, Hunt & Mullainathan, Sendhil & Taubinsky, Dmitry, 2014. "Energy policy with externalities and internalities," Journal of Public Economics, Elsevier, vol. 112(C), pages 72-88.
    11. Geir H. M. Bjertnaes, 2017. "The Efficient Combination of Taxes on Fuel and Vehicles," CESifo Working Paper Series 6789, CESifo.
    12. Langer, Ashley & Maheshri, Vikram & Winston, Clifford, 2017. "From gallons to miles: A disaggregate analysis of automobile travel and externality taxes," Journal of Public Economics, Elsevier, vol. 152(C), pages 34-46.
    13. Tscharaktschiew, Stefan, 2020. "Why are highway speed limits really justified? An equilibrium speed choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 317-351.
    14. Tatsuhito Kono & Yohei Mitsuhiro & Jun Yoshida, 2021. "Simultaneous optimization of multiple taxes on car use and tolls considering the marginal cost of public funds in Japan," The Japanese Economic Review, Springer, vol. 72(2), pages 261-297, April.
    15. Stef Proost, 2011. "Theory of External Costs," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 14, Edward Elgar Publishing.
    16. van Ommeren, Jos N. & van der Straaten, J. Willemijn, 2008. "The effect of search imperfections on commuting behaviour: Evidence from employed and self-employed workers," Regional Science and Urban Economics, Elsevier, vol. 38(2), pages 127-147, March.
    17. Geir H. M. Bjertnaes, 2019. "Efficient Taxation of Fuel and Road Use," CESifo Working Paper Series 8019, CESifo.
    18. Geir H. M. Bjertnæs, 2017. "The efficient combination of taxes on fuel and vehicles," Discussion Papers 867, Statistics Norway, Research Department.
    19. Sulikova, Simona & van den Bijgaart, Inge & Klenert, David & Mattauch, Linus, 2020. "Optimal fuel taxation with suboptimal health choices," Working Papers in Economics 794, University of Gothenburg, Department of Economics.
    20. Van Dender, Kurt, 2009. "Energy policy in transport and transport policy," Energy Policy, Elsevier, vol. 37(10), pages 3854-3862, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:41:y:2014:i:3:p:611-631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.