IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v58y2014i3p415-462.html
   My bibliography  Save this article

Is Local Food More Environmentally Friendly? The GHG Emissions Impacts of Consuming Imported versus Domestically Produced Food

Author

Listed:
  • Misak Avetisyan
  • Thomas Hertel
  • Gregory Sampson

Abstract

With the increased interest in the ‘carbon footprint’ of global economic activities, civil society, governments and the private sector are calling into question the wisdom of transporting food products across continents instead of consuming locally produced food. While the proposition that local consumption will reduce one’s carbon footprint may seem obvious at first glance, this conclusion is not at all clear when one considers that the economic emissions intensity of food production varies widely across regions. In this paper we concentrate on the tradeoff between production and transport emissions reductions by testing the following hypothesis: Substitution of domestic for imported food will reduce the direct and indirect Greenhouse Gas (GHG) emissions associated with consumption. We focus on ruminant livestock since it has the highest emissions intensity across food sectors, but we also consider other food products as well, and alternately perturb the mix of domestic and imported food products by a marginal (equal) amount. We then compare the emissions associated with each of these consumption changes in order to compute a marginal emissions intensity of local food consumption, by country and product. The variations in regional ruminant emissions intensities have profound implications for the food miles debate. While shifting consumption patterns in wealthy countries from imported to domestic livestock products reduces GHG emissions associated with international trade and transport activity, we find that these transport emissions reductions are swamped by changes in global emissions due to differences in GHG emissions intensities of production. Therefore, diverting consumption to local goods only reduces global emissions when undertaken in regions with relatively low emissions intensities. For non-ruminant products, the story is more nuanced. Transport costs are more important in the case of dairy products and vegetable oils. Overall, domestic emissions intensities are the dominant part of the food miles story in about 90 % of the country/commodity cases examined here. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Misak Avetisyan & Thomas Hertel & Gregory Sampson, 2014. "Is Local Food More Environmentally Friendly? The GHG Emissions Impacts of Consuming Imported versus Domestically Produced Food," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 415-462, July.
  • Handle: RePEc:kap:enreec:v:58:y:2014:i:3:p:415-462
    DOI: 10.1007/s10640-013-9706-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10640-013-9706-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10640-013-9706-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cristea, Anca & Hummels, David & Puzzello, Laura & Avetisyan, Misak, 2013. "Trade and the greenhouse gas emissions from international freight transport," Journal of Environmental Economics and Management, Elsevier, vol. 65(1), pages 153-173.
    2. Hertel, Thomas & Hummels, David & Ivanic, Maros & Keeney, Roman, 2007. "How confident can we be of CGE-based assessments of Free Trade Agreements?," Economic Modelling, Elsevier, vol. 24(4), pages 611-635, July.
    3. DeVuyst, Eric A. & Preckel, Paul V., 1997. "Sensitivity analysis revisited: A quadrature-based approach," Journal of Policy Modeling, Elsevier, vol. 19(2), pages 175-185, April.
    4. Hertel, Thomas, 1997. "Global Trade Analysis: Modeling and applications," GTAP Books, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, number 7685, December.
    5. Xueqin Zhu & Lia Wesenbeeck & Ekko Ierland, 2006. "Impacts of Novel Protein Foods on Sustainable Food Production and Consumption: Lifestyle Change and Environmental Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 35(1), pages 59-87, September.
    6. Els Wynen, 2009. "No Through Road: The Limitations of Food Miles," Working Papers id:1942, eSocialSciences.
    7. John Ballingall & Niven Winchester, 2010. "Food Miles: Starving the Poor?," The World Economy, Wiley Blackwell, vol. 33(10), pages 1201-1217, October.
    8. Jeffrey Reimer & Thomas Hertel, 2004. "Estimation of International Demand Behaviour for Use with Input-Output Based Data," Economic Systems Research, Taylor & Francis Journals, vol. 16(4), pages 347-366.
    9. Burniaux, Jean-Marc & Truong Truong, 2002. "GTAP-E: An Energy-Environmental Version of the GTAP Model," GTAP Technical Papers 923, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    10. Glen Peters & Robbie Andrew & James Lennox, 2011. "Constructing An Environmentally-Extended Multi-Regional Input-Output Table Using The Gtap Database," Economic Systems Research, Taylor & Francis Journals, vol. 23(2), pages 131-152.
    11. Coley, David & Howard, Mark & Winter, Michael, 2009. "Local food, food miles and carbon emissions: A comparison of farm shop and mass distribution approaches," Food Policy, Elsevier, vol. 34(2), pages 150-155, April.
    12. Burniaux, Jean-March & Truong, Truong P., 2002. "Gtap-E: An Energy-Environmental Version Of The Gtap Model," Technical Papers 28705, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. King, Robert P. & Hand, Michael S. & DiGiacomo, Gigi & Clancy, Kate & Gomez, Miguel I. & Hardesty, Shermain D. & Lev, Larry & McLaughlin, Edward W., 2010. "Comparing the Structure, Size, and Performance of Local and Mainstream Food Supply Chains," Economic Research Report 246989, United States Department of Agriculture, Economic Research Service.
    14. Carlsson-Kanyama, Annika & Ekstrom, Marianne Pipping & Shanahan, Helena, 2003. "Food and life cycle energy inputs: consequences of diet and ways to increase efficiency," Ecological Economics, Elsevier, vol. 44(2-3), pages 293-307, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kym Anderson, 2021. "Agriculture’s globalization: Endowments, technologies, tastes and policies," Departmental Working Papers 2021-26, The Australian National University, Arndt-Corden Department of Economics.
    2. Zwart, Tjitske Anna & Mathijs, Erik & Avermaete, Tessa, 2016. "Can Alternative Food Networks contribute to a transition towards sustainability in Flanders: Assessing the marketing functions of Voedselteams," Working Papers 245069, Katholieke Universiteit Leuven, Centre for Agricultural and Food Economics.
    3. Kym Anderson, 2022. "Agriculture in a more uncertain global trade environment," Agricultural Economics, International Association of Agricultural Economists, vol. 53(4), pages 563-579, July.
    4. Jose Nuno-Ledesma & Nelson B. Villoria, 2019. "Estimating International Trade Margins Shares by Mode of Transport for the GTAP Data Base," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 4(1), pages 28-49, June.
    5. Azucena Gracia & Miguel I. Gómez, 2020. "Food Sustainability and Waste Reduction in Spain: Consumer Preferences for Local, Suboptimal, And/Or Unwashed Fresh Food Products," Sustainability, MDPI, vol. 12(10), pages 1-15, May.
    6. Ariane Voglhuber-Slavinsky & Hartmut Derler & Björn Moller & Ewa Dönitz & Enno Bahrs & Simon Berner, 2021. "Measures to Increase Local Food Supply in the Context of European Framework Scenarios for the Agri-Food Sector," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    7. Gary Goggins, 2018. "Developing a sustainable food strategy for large organizations: The importance of context in shaping procurement and consumption practices," Business Strategy and the Environment, Wiley Blackwell, vol. 27(7), pages 838-848, November.
    8. Du, Kerui & Yu, Ying & Li, Jing, 2020. "Does international trade promote CO2 emission performance? An empirical analysis based on a partially linear functional-coefficient panel data model," Energy Economics, Elsevier, vol. 92(C).
    9. Xu Hartling, 2020. "The Contribution Of Farm Stand, Farmers Market, And Community Supported Agriculture To The Community And Environment," Economy & Business Journal, International Scientific Publications, Bulgaria, vol. 14(1), pages 316-328.
    10. Lenore Newman & Robert Newell & Colin Dring & Alesandros Glaros & Evan Fraser & Zsofia Mendly-Zambo & Arthur Gill Green & Krishna Bahadur KC, 2023. "Agriculture for the Anthropocene: novel applications of technology and the future of food," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 15(3), pages 613-627, June.
    11. Clare Gupta & Tamar Makov, 2017. "How global is my local milk? Evaluating the first-order inputs of “local” milk in Hawai‘i," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 34(3), pages 619-630, September.
    12. Anderson, Kym, 2022. "Trade-related food policies in a more volatile climate and trade environment," Food Policy, Elsevier, vol. 109(C).
    13. Rotem Zelingher & Andrea Ghermandi & Enrica Cian & Malcolm Mistry & Iddo Kan, 2019. "Economic Impacts of Climate Change on Vegetative Agriculture Markets in Israel," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 679-696, October.
    14. Kym Anderson, 2021. "Food policy in a more volatile climate and trade environment," Departmental Working Papers 2021-25, The Australian National University, Arndt-Corden Department of Economics.
    15. Jana Schwarz & Monica Schuster & Bernd Annaert & Miet Maertens & Erik Mathijs, 2016. "Sustainability of Global and Local Food Value Chains: An Empirical Comparison of Peruvian and Belgian Asparagus," Sustainability, MDPI, vol. 8(4), pages 1-22, April.
    16. Vita, Gibran & Lundström, Johan R. & Hertwich, Edgar G. & Quist, Jaco & Ivanova, Diana & Stadler, Konstantin & Wood, Richard, 2019. "The Environmental Impact of Green Consumption and Sufficiency Lifestyles Scenarios in Europe: Connecting Local Sustainability Visions to Global Consequences," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    17. Enthoven, Laura & Van den Broeck, Goedele, 2021. "Local food systems: Reviewing two decades of research," Agricultural Systems, Elsevier, vol. 193(C).
    18. Tantiwatthanaphanich, Thanapan & Shao, Xuan & Huang, Liqiao & Yoshida, Yoshikuni & Long, Yin, 2022. "Evaluating carbon footprint embodied in Japanese food consumption based on global supply chain," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 56-65.
    19. Castiglione, Concetta & Mazzocchi, Mario, 2019. "Ten years of five-a-day policy in the UK: Nutritional outcomes and environmental effects," Ecological Economics, Elsevier, vol. 157(C), pages 185-194.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hertel, Thomas, 2013. "Global Applied General Equilibrium Analysis Using the Global Trade Analysis Project Framework," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 815-876, Elsevier.
    2. Hertel, Thomas W. & Tyner, Wallace E. & Birur, Dileep K., 2008. "Biofuels for all? Understanding the Global Impacts of Multinational Mandates," Conference papers 331729, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. Dixon, Peter B. & Rimmer, Maureen T., 2009. "Simulating the U.S. recession," Conference papers 331862, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    4. Dirk WILLENBOCKEL & Sherman ROBINSON, "undated". "The Global Financial Crisis, LDC Exports and Welfare: Analysis with a World Trade Model," EcoMod2009 21500092, EcoMod.
    5. Alessandro Antimiani & Valeria Costantini & Anil Markandya & Chiara Martini & Alessandro Palma, 2014. "A dynamic CGE modelling approach for analyzing trade-offs in climate change policy options: the case of Green Climate Fund," Working Papers 2014-05, BC3.
    6. B. Henderson & A. Golub & D. Pambudi & T. Hertel & C. Godde & M. Herrero & O. Cacho & P. Gerber, 2018. "The power and pain of market-based carbon policies: a global application to greenhouse gases from ruminant livestock production," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 349-369, March.
    7. Joshua Elliott & Meredith Franklin & Ian Foster & Todd Munson & Margaret Loudermilk, 2012. "Propagation of Data Error and Parametric Sensitivity in Computable General Equilibrium Models," Computational Economics, Springer;Society for Computational Economics, vol. 39(3), pages 219-241, March.
    8. Markandya, A. & Antimiani, A. & Costantini, V. & Martini, C. & Palma, A. & Tommasino, M.C., 2015. "Analyzing Trade-offs in International Climate Policy Options: The Case of the Green Climate Fund," World Development, Elsevier, vol. 74(C), pages 93-107.
    9. Antimiani, Alessandro & Costantini, Valeria & Paglialunga, Elena, 2015. "The sensitivity of climate-economy CGE models to energy-related elasticity parameters: Implications for climate policy design," Economic Modelling, Elsevier, vol. 51(C), pages 38-52.
    10. Weslem Rodrigues Faria & Eduardo Amaral Haddad, 2017. "Modeling Land Use And The Effects Of Climate Change In Brazil," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 1-37, February.
    11. Chitiga, M. & Mabugu, R. & Maisonnave, H., 2014. "Real Effects of Public Debt on National Development," Conference papers 332555, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    12. Alessandro Antimiani & Valeria Costantini & Elena Paglialunga, 2015. "An analysis of the sensitivity of a dynamic climate-economy CGE model (GDynE) to empirically estimated energy-related elasticity parameters," SEEDS Working Papers 0515, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Mar 2015.
    13. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    14. Eboli, Fabio & Parrado, Ramiro & Roson, Roberto, 2010. "Climate-change feedback on economic growth: explorations with a dynamic general equilibrium model," Environment and Development Economics, Cambridge University Press, vol. 15(5), pages 515-533, October.
    15. Kym Anderson & Ernesto Valenzuela & Lee Ann Jackson, 2008. "Recent and Prospective Adoption of Genetically Modified Cotton: A Global Computable General Equilibrium Analysis of Economic Impacts," Economic Development and Cultural Change, University of Chicago Press, vol. 56(2), pages 265-296, January.
    16. Britz, Wolfgang & Li, Jingwen & Shang, Linmei, 2021. "Combining large-scale sensitivity analysis in Computable General Equilibrium models with Machine Learning: An Example Application to policy supporting the bio-economy," Conference papers 333285, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Parrado, Ramiro & De Cian, Enrica, 2014. "Technology spillovers embodied in international trade: Intertemporal, regional and sectoral effects in a global CGE framework," Energy Economics, Elsevier, vol. 41(C), pages 76-89.
    18. Maria Berrittella & Katrin Rehdanz & Richard S.J. Tol, 2006. "The Economic Impact of the South-North Water Transfer Project in China: A Computable General Equilibrium Analysis," Working Papers 2006.154, Fondazione Eni Enrico Mattei.
    19. Antimiani, Alessandro & Costantini, Valeria & Martini, Chiara & Salvatici, Luca & Tommasino, Maria Cristina, 2011. "Cooperative and non-cooperative solutions to carbon leakage," Conference papers 332096, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    20. Michetti, Melania & Parrado, Ramiro, 2012. "Improving Land-use modelling within CGE to assess Forest-based Mitigation Potential and Costs," Climate Change and Sustainable Development 122862, Fondazione Eni Enrico Mattei (FEEM).

    More about this item

    Keywords

    CGE model; Emissions intensity; Food miles debate; Livestock emissions; Transport emissions; F18; Q17; Q18; Q56; Q58;
    All these keywords.

    JEL classification:

    • F18 - International Economics - - Trade - - - Trade and Environment
    • Q17 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agriculture in International Trade
    • Q18 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Policy; Food Policy; Animal Welfare Policy
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:58:y:2014:i:3:p:415-462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.