Advanced Search
MyIDEAS: Login to save this article or follow this journal

Flow of conjunctural information and forecast of euro area economic activity

Contents:

Author Info

  • Katja Drechsel
  • Laurent Maurin

Abstract

Combining forecasts, we analyse the role of information flow in computing short-term forecasts up to one quarter ahead for the euro area GDP and its main components. A dataset of 114 monthly indicators is set up and simple bridge equations are estimated. The individual forecasts are then pooled, using different weighting schemes. To take into consideration the release calendar of each indicator, six forecasts are compiled successively during the quarter. We found that the sequencing of information determines the weight allocated to each block of indicators, especially when the first month of hard data becomes available. This conclusion extends the findings of the recent literature. Moreover, when combining forecasts, two weighting schemes are found to outperform the equal weighting scheme in almost all cases. Compared to an AR forecast, these improve by more than 40% the forecast performance for GDP in the current and next quarter. Copyright (C) 2010 John Wiley & Sons, Ltd.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.1002/for.1177
Download Restriction: no

Bibliographic Info

Article provided by John Wiley & Sons, Ltd. in its journal Journal of Forecasting.

Volume (Year): 30 (2011)
Issue (Month): 3 (April)
Pages: 336-354

as in new window
Handle: RePEc:jof:jforec:v:30:y:2011:i:3:p:336-354

Contact details of provider:
Web page: http://www3.interscience.wiley.com/cgi-bin/jhome/2966

Related research

Keywords: large dataset ; forecast pooling ; weighting scheme ; GDP components ; out‐of‐sample forecast performance ;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1684, 08.
  2. Bańbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346.
  3. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
  4. Marie Diron, 2008. "Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(5), pages 371-390.
  5. Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
  6. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
  7. Francis X. Diebold & Peter Pauly, 1987. "The use of prior information in forecast combination," Special Studies Papers 218, Board of Governors of the Federal Reserve System (U.S.).
  8. George Kapetanios & Vincent Labhard & Simon Price, 2005. "Forecasting using Bayesian and information theoretic model averaging: an application to UK inflation," Bank of England working papers 268, Bank of England.
  9. Min, Chung-ki & Zellner, Arnold, 1993. "Bayesian and non-Bayesian methods for combining models and forecasts with applications to forecasting international growth rates," Journal of Econometrics, Elsevier, vol. 56(1-2), pages 89-118, March.
  10. Gary Koop & Simon Potter, 2003. "Forecasting in Large Macroeconomic Panels using Bayesian Model Averaging," Discussion Papers in Economics 04/16, Department of Economics, University of Leicester.
  11. David Hendry & Michael Clements, 2001. "Pooling of Forecasts," Economics Series Working Papers 2002-W09, University of Oxford, Department of Economics.
  12. Massimiliano Marcellino, 2004. "Forecast Pooling for European Macroeconomic Variables," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(1), pages 91-112, 02.
  13. Kitchen, John & Monaco, Ralph, 2003. "Real-Time Forecasting in Practice: The U.S. Treasury Staff's Real-Time GDP Forecast System," MPRA Paper 21068, University Library of Munich, Germany, revised Oct 2003.
  14. Darracq Pariès, Matthieu & Maurin, Laurent, 2008. "The role of country-specific trade and survey data in forecasting euro area manufacturing production: perspective from large panel factor models," Working Paper Series 0894, European Central Bank.
  15. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, Elsevier.
  16. Rünstler, Gerhard & Sédillot, Franck, 2003. "Short-term estimates of euro area real GDP by means of monthly data," Working Paper Series 0276, European Central Bank.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Robert Lehmann & Klaus Wohlrabe, 2014. "Forecasting gross value-added at the regional level: are sectoral disaggregated predictions superior to direct ones?," Jahrbuch für Regionalwissenschaft, Springer, vol. 34(1), pages 61-90, February.
  2. Laura D’Amato & Lorena Garegnani & Emilio Blanco, 2011. "Using the Flow of High Frequency Information for Short Term Forecasting of Economic Activity in Argentina," Ensayos Económicos, Central Bank of Argentina, Economic Research Department, vol. 1(64), pages 7-33, October -.
  3. Katja Drechsel & Rolf Scheufele, 2010. "Should We Trust in Leading Indicators? Evidence from the Recent Recession," IWH Discussion Papers 10, Halle Institute for Economic Research.
  4. Katja Drechsel & S. Giesen & Axel Lindner, 2014. "Outperforming IMF Forecasts by the Use of Leading Indicators," IWH Discussion Papers 4, Halle Institute for Economic Research.
  5. Lehmann, Robert & Wohlrabe, Klaus, 2013. "Forecasting GDP at the regional level with many predictors," Discussion Papers in Economics 17104, University of Munich, Department of Economics.
  6. Katja Drechsel & R. Scheufele, 2013. "Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment," IWH Discussion Papers 7, Halle Institute for Economic Research.
  7. Lehmann, Robert & Wohlrabe, Klaus, 2013. "Sectoral gross value-added forecasts at the regional level: Is there any information gain?," MPRA Paper 46765, University Library of Munich, Germany.
  8. A. Girardi & R. Golinelli & C. Pappalardo, 2014. "The Role of Indicator Selection in Nowcasting Euro Area GDP in Pseudo Real Time," Working Papers wp919, Dipartimento Scienze Economiche, Universita' di Bologna.
  9. Guérin, Pierre & Maurin, Laurent & Mohr, Matthias, 2011. "Trend-cycle decomposition of output and euro area inflation forecasts: a real-time approach based on model combination," Working Paper Series 1384, European Central Bank.
  10. Drechsel, Katja & Scheufele, Rolf, 2012. "The performance of short-term forecasts of the German economy before and during the 2008/2009 recession," International Journal of Forecasting, Elsevier, vol. 28(2), pages 428-445.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:30:y:2011:i:3:p:336-354. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.