IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v25y2006i5p325-349.html
   My bibliography  Save this article

A non-Gaussian generalization of the Airline model for robust seasonal adjustment

Author

Listed:
  • SIEM JAN KOOPMAN

    (Vrije Universiteit Amsterdam, The Netherlands)

  • JOHN A. D. ASTON

Abstract

In their seminal book Time Series Analysis: Forecasting and Control, Box and Jenkins (1976) introduce the Airline model, which is still routinely used for the modelling of economic seasonal time series. The Airline model is for a differenced time series (in levels and seasons) and constitutes a linear moving average of lagged Gaussian disturbances which depends on two coefficients and a fixed variance. In this paper a novel approach to seasonal adjustment is developed that is based on the Airline model and that accounts for outliers and breaks in time series. For this purpose we consider the canonical representation of the Airline model. It takes the model as a sum of trend, seasonal and irregular (unobserved) components which are uniquely identified as a result of the canonical decomposition. The resulting unobserved components time series model is extended by components that allow for outliers and breaks. When all components depend on Gaussian disturbances, the model can be cast in state space form and the Kalman filter can compute the exact log-likelihood function. Related filtering and smoothing algorithms can be used to compute minimum mean squared error estimates of the unobserved components. However, the outlier and break components typically rely on heavy-tailed densities such as the t or the mixture of normals. For this class of non-Gaussian models, Monte Carlo simulation techniques will be used for estimation, signal extraction and seasonal adjustment. This robust approach to seasonal adjustment allows outliers to be accounted for, while keeping the underlying structures that are currently used to aid reporting of economic time series data. Copyright © 2006 John Wiley & Sons, Ltd.

Suggested Citation

  • Siem Jan Koopman & John A. D. Aston, 2006. "A non-Gaussian generalization of the Airline model for robust seasonal adjustment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(5), pages 325-349.
  • Handle: RePEc:jof:jforec:v:25:y:2006:i:5:p:325-349
    DOI: 10.1002/for.991
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/for.991
    File Function: Link to full text; subscription required
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.991?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maravall, Agustin & Mathis, Alexandre, 1994. "Encompassing univariate models in multivariate time series : A case study," Journal of Econometrics, Elsevier, vol. 61(2), pages 197-233, April.
    2. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    3. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 127-152, April.
    4. Kloek, Tuen & van Dijk, Herman K, 1978. "Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo," Econometrica, Econometric Society, vol. 46(1), pages 1-19, January.
    5. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, Decembrie.
    6. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 169-177, April.
    7. Siem Jan Koopman & Neil Shephard, 2002. "Testing the Assumptions Behind the Use of Importance Sampling," Economics Papers 2002-W17, Economics Group, Nuffield College, University of Oxford.
    8. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
    9. William Bell & Steven Hillmer, 1991. "Initializing The Kalman Filter For Nonstationary Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 12(4), pages 283-300, July.
    10. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    11. Harvey, Andrew C & Koopman, Siem Jan, 1992. "Diagnostic Checking of Unobserved-Components Time Series Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 377-389, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Yi & Liu, John J. & Hu, Yi & Wang, Yingfeng & Lai, Kin Keung & Wang, Shouyang, 2014. "A neuro-fuzzy combination model based on singular spectrum analysis for air transport demand forecasting," Journal of Air Transport Management, Elsevier, vol. 39(C), pages 1-11.
    2. Proietti, Tommaso & Pedregal, Diego J., 2023. "Seasonality in High Frequency Time Series," Econometrics and Statistics, Elsevier, vol. 27(C), pages 62-82.
    3. Jin, Feng & Li, Yongwu & Sun, Shaolong & Li, Hongtao, 2020. "Forecasting air passenger demand with a new hybrid ensemble approach," Journal of Air Transport Management, Elsevier, vol. 83(C).
    4. Tascón, Diana C. & Díaz Olariaga, Oscar, 2021. "Air traffic forecast and its impact on runway capacity. A System Dynamics approach," Journal of Air Transport Management, Elsevier, vol. 90(C).
    5. Hindrayanto, Irma & Koopman, Siem Jan & Ooms, Marius, 2010. "Exact maximum likelihood estimation for non-stationary periodic time series models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2641-2654, November.
    6. Wegmüller, Philipp & Glocker, Christian & Guggia, Valentino, 2023. "Weekly economic activity: Measurement and informational content," International Journal of Forecasting, Elsevier, vol. 39(1), pages 228-243.
    7. Banerjee, Nilabhra & Morton, Alec & Akartunalı, Kerem, 2020. "Passenger demand forecasting in scheduled transportation," European Journal of Operational Research, Elsevier, vol. 286(3), pages 797-810.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siem Jan Koopman & Charles S. Bos, 2002. "Time Series Models with a Common Stochastic Variance for Analysing Economic Time Series," Tinbergen Institute Discussion Papers 02-113/4, Tinbergen Institute.
    2. Siem Jan Koopman & Marius Ooms & André Lucas & Kees van Montfort & Victor Van Der Geest, 2008. "Estimating systematic continuous‐time trends in recidivism using a non‐Gaussian panel data model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 62(1), pages 104-130, February.
    3. Tommaso Proietti & Marco Riani, 2009. "Transformations and seasonal adjustment," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 47-69, January.
    4. Charles Bos & Neil Shephard, 2006. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 219-244.
    5. Siem Jan Koopman & Philip Hans Franses, 2002. "Constructing Seasonally Adjusted Data with Time‐varying Confidence Intervals," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 64(5), pages 509-526, December.
    6. Koopman, Siem Jan & Lucas, André, 2008. "A Non-Gaussian Panel Time Series Model for Estimating and Decomposing Default Risk," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 510-525.
    7. Borus Jungbacker & Siem Jan Koopman, 2005. "On Importance Sampling for State Space Models," Tinbergen Institute Discussion Papers 05-117/4, Tinbergen Institute.
    8. Siem Jan Koopman & Rutger Lit & Thuy Minh Nguyen, 2012. "Fast Efficient Importance Sampling by State Space Methods," Tinbergen Institute Discussion Papers 12-008/4, Tinbergen Institute, revised 16 Oct 2014.
    9. Paul Labonne & Martin Weale, 2018. "Temporal disaggregation of overlapping noisy quarterly data using state space models: Estimation of monthly business sector output from Value Added Tax data in the UK," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-18, Economic Statistics Centre of Excellence (ESCoE).
    10. Borus Jungbacker & Siem Jan Koopman, 2006. "Model-Based Measurement of Actual Volatility in High-Frequency Data," Advances in Econometrics, in: Econometric Analysis of Financial and Economic Time Series, pages 183-210, Emerald Group Publishing Limited.
    11. Koopman, Siem Jan & Lucas, André, 2008. "A Non-Gaussian Panel Time Series Model for Estimating and Decomposing Default Risk," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 510-525.
    12. Siem Jan Koopman & Kai Ming Lee, 2009. "Seasonality with trend and cycle interactions in unobserved components models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 427-448, September.
    13. Siem Jan Koopman & André Lucas & Marcel Scharth, 2015. "Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State-Space Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 114-127, January.
    14. repec:jss:jstsof:41:i07 is not listed on IDEAS
    15. Djuranovik, Leslie, 2014. "The Indonesian macroeconomy and the yield curve: A dynamic latent factor approach," Journal of Asian Economics, Elsevier, vol. 34(C), pages 1-15.
    16. Tommaso Proietti & Eric Hillebrand, 2017. "Seasonal changes in central England temperatures," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 769-791, June.
    17. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    18. Bernd Schwaab & Andre Lucas & Siem Jan Koopman, 2010. "Systemic Risk Diagnostics," Tinbergen Institute Discussion Papers 10-104/2/DSF 2, Tinbergen Institute, revised 29 Nov 2010.
    19. Proietti, Tommaso & Riani, Marco, 2007. "Transformations and Seasonal Adjustment: Analytic Solutions and Case Studies," MPRA Paper 7862, University Library of Munich, Germany.
    20. Charles Bos & Neil Shephard, 2006. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 219-244.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:25:y:2006:i:5:p:325-349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.