IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i13p7243-d584235.html
   My bibliography  Save this article

Examining the Economic Impacts of Climate Change on Net Crop Income in the Ethiopian Nile Basin: A Ricardian Fixed Effect Approach

Author

Listed:
  • Melese Mulu Baylie

    (Department of Economics, Debre Tabor University, Debra Tabor 272, Ethiopia
    Department of Rural Development Engineering, Hungarian University of Agriculture and Life Sciences (Former Szent Istvan University), 2100 Gödöllő, Hungary)

  • Csaba Fogarassy

    (Institute of Sustainable Development and Farming, Hungarian University of Agriculture and Life Sciences (Former Szent Istvan University), 2100 Gödöllő, Hungary)

Abstract

Climate change affects crop production by distorting the indestructible productive power of the land. The objective of this study is to examine the economic impacts of climate change on net crop income in Nile Basin Ethiopia using a Ricardian fixed effect approach employing the International Food Policy Research Institute (IFPRI) household survey data for Ethiopia in 2015 and 2016. The survey samples were obtained through a three-stage stratified sampling technique from the five regions (Amhara, Tigray, Benishangul Gumuz, Oromia, and Southern Nation Nationality and People (SNNP) along the Nile basin Ethiopia. There are only 12–14% female household heads while there are 80–86% male households in the regions under study. In the regions, more than half of (64%) the household heads are illiterate and almost only one-tenth of them (12%) had received remittance from abroad from their relatives or children. Crop variety adoption rate is minimal, adopted by the 31% of farmers. Only 30% of the surveyed farmers mentioned that they planted their crop seeds in row whereas the rest 70% had not applied this method. The regression results from the fixed effect least square dummy variable model showed that literacy, household size, remittance, asset value, and total land holdings have significant and positive impacts on the net crop income per hectare. The regional dummy variables estimate indicated that all the regions are negatively affected by climate change at varying levels. Strategies to climate change adaptation have significant and positive contributions in leveraging the damaging effects of climate change. The results also showed that increased winter and summer temperature and rainfall increase net crop income per hectare. The estimated coefficient of the interaction term of spring temperature and rainfall is significant and negative. On the other hand, while the mean annual temperature is damaging to crops, annual rainfall is beneficial. It can be deduced that, while increased temperature and rainfall in summer and winter increase the net crop income, the converse is true for winter and spring seasons. The study also proposes a specific, context-dependent, farm-level adaptation analysis of how farmers cope with the different climatic impacts of the Nile Basin and maintain the income levels that they have previously enjoyed.

Suggested Citation

  • Melese Mulu Baylie & Csaba Fogarassy, 2021. "Examining the Economic Impacts of Climate Change on Net Crop Income in the Ethiopian Nile Basin: A Ricardian Fixed Effect Approach," Sustainability, MDPI, vol. 13(13), pages 1-16, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7243-:d:584235
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/13/7243/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/13/7243/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deschenes, Olivier & Greenstone, Michael, 2004. "The Economic Impacts of Climate Change: Evidence from Agricultural Profits and Random Fluctuations in Weather," University of California at Santa Barbara, Economics Working Paper Series qt6w7242cj, Department of Economics, UC Santa Barbara.
    2. Emanuele Massetti & Robert Mendelsohn, 2011. "Estimating Ricardian Models With Panel Data," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 301-319.
    3. Kassahun Berhanu & Colin Poulton, 2014. "The Political Economy of Agricultural Extension Policy in Ethiopia: Economic Growth and Political Control," Development Policy Review, Overseas Development Institute, vol. 32(s2), pages 199-216, September.
    4. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    5. Gebreegziabher, Zenebe & Stage, Jesper & Mekonnen, Alemu & Alemu, Atlaw, 2011. "Climate Change and the Ethiopian Economy: A Computable General Equilibrium Analysis," RFF Working Paper Series dp-11-09-efd, Resources for the Future.
    6. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    7. Colin Carter & Xiaomeng Cui & Dalia Ghanem & Pierre Mérel, 2018. "Identifying the Economic Impacts of Climate Change on Agriculture," Annual Review of Resource Economics, Annual Reviews, vol. 10(1), pages 361-380, October.
    8. Craig W. Hutton & Oliver Hensengerth & Tristan Berchoux & Van P. D. Tri & Thi Tong & Nghia Hung & Hal Voepel & Stephen E. Darby & Duong Bui & Thi N. Bui & Nguyen Huy & Daniel Parsons, 2021. "Stakeholder Expectations of Future Policy Implementation Compared to Formal Policy Trajectories: Scenarios for Agricultural Food Systems in the Mekong Delta," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    9. Asrat, Sinafikeh & Yesuf, Mahmud & Carlsson, Fredrik & Wale, Edilegnaw, 2010. "Farmers' preferences for crop variety traits: Lessons for on-farm conservation and technology adoption," Ecological Economics, Elsevier, vol. 69(12), pages 2394-2401, October.
    10. Khan, Imran & Lei, Hongdou & Shah, Irshad Ali & Ali, Imad & Khan, Inayat & Muhammad, Ihsan & Huo, Xuexi & Javed, Tehseen, 2020. "Farm households’ risk perception, attitude and adaptation strategies in dealing with climate change: Promise and perils from rural Pakistan," Land Use Policy, Elsevier, vol. 91(C).
    11. Scoville-Simonds, Morgan & Jamali, Hameed & Hufty, Marc, 2020. "The Hazards of Mainstreaming: Climate change adaptation politics in three dimensions," World Development, Elsevier, vol. 125(C).
    12. Jawid, Asadullah, 2020. "A Ricardian analysis of the economic impact of climate change on agriculture: Evidence from the farms in the central highlands of Afghanistan," Journal of Asian Economics, Elsevier, vol. 67(C).
    13. Khonje, Makaiko & Manda, Julius & Alene, Arega D. & Kassie, Menale, 2015. "Analysis of Adoption and Impacts of Improved Maize Varieties in Eastern Zambia," World Development, Elsevier, vol. 66(C), pages 695-706.
    14. Severen, Christopher & Costello, Christopher & Deschênes, Olivier, 2018. "A Forward-Looking Ricardian Approach: Do land markets capitalize climate change forecasts?," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 235-254.
    15. Ruslana Palatnik & Roberto Roson, 2012. "Climate change and agriculture in computable general equilibrium models: alternative modeling strategies and data needs," Climatic Change, Springer, vol. 112(3), pages 1085-1100, June.
    16. Gebre-Selassie, Samuel, 2004. "The Roles of Agriculture in the Development Process: Recent Experiences and Lessons from Ethiopia," 2004 Inaugural Symposium, December 6-8, 2004, Nairobi, Kenya 9530, African Association of Agricultural Economists (AAAE).
    17. Robert O. Mendelsohn & Emanuele Massetti, 2017. "The Use of Cross-Sectional Analysis to Measure Climate Impacts on Agriculture: Theory and Evidence," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 280-298.
    18. Zhai, Fan & Lin, Tun & Byambadorj, Enerelt, 2009. "A General Equilibrium Analysis of the Impact of Climate Change on Agriculture in the People’s Republic of China," Asian Development Review, Asian Development Bank, vol. 26(1), pages 206-225.
    19. Afriyie-Kraft, Lydia & Zabel, Astrid & Damnyag, Lawrence, 2020. "Adaptation strategies of Ghanaian cocoa farmers under a changing climate," Forest Policy and Economics, Elsevier, vol. 113(C).
    20. Deressa, Temesgen Tadesse, 2007. "Measuring the economic impact of climate change on Ethiopian agriculture : Ricardian approach," Policy Research Working Paper Series 4342, The World Bank.
    21. Mendelsohn, Robert & Dinar, Ariel & Sanghi, Apurva, 2001. "The effect of development on the climate sensitivity of agriculture," Environment and Development Economics, Cambridge University Press, vol. 6(1), pages 85-101, February.
    22. Aleksander Grzelak & Jakub Staniszewski & Michał Borychowski, 2020. "Income or Assets—What Determines the Approach to the Environment among Farmers in A Region in Poland?," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    23. Salvatore Di Falco & Mahmud Yesuf & Gunnar Kohlin & Claudia Ringler, 2012. "Estimating the Impact of Climate Change on Agriculture in Low-Income Countries: Household Level Evidence from the Nile Basin, Ethiopia," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 52(4), pages 457-478, August.
    24. Asfaw, Solomon & Shiferaw, Bekele & Simtowe, Franklin & Lipper, Leslie, 2012. "Impact of modern agricultural technologies on smallholder welfare: Evidence from Tanzania and Ethiopia," Food Policy, Elsevier, vol. 37(3), pages 283-295.
    25. Maximilian Auffhammer, 2018. "Quantifying Economic Damages from Climate Change," Journal of Economic Perspectives, American Economic Association, vol. 32(4), pages 33-52, Fall.
    26. Yalew, Amsalu W. & Hirte, Georg & Lotze-Campen, Hermann & Tscharaktschiew, Stefan, 2017. "Economic effects of climate change in developing countries: Economy-wide and regional analysis for Ethiopia," CEPIE Working Papers 10/17, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    27. Ojo, T.O. & Baiyegunhi, L.J.S., 2020. "Determinants of climate change adaptation strategies and its impact on the net farm income of rice farmers in south-west Nigeria," Land Use Policy, Elsevier, vol. 95(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Melese Mulu Baylie & Csaba Fogarassy, 2022. "Decision Analysis of the Adaptation of Households to Extreme Floods Using an Extended Protection Motivation Framework—A Case Study from Ethiopia," Land, MDPI, vol. 11(10), pages 1-20, October.
    2. Girma Mulugeta Emeru, 2022. "The perception and determinants of agricultural technology adaptation of teff producers to climate change in North Shewa zone, Amhara Regional State, Ethiopia," Cogent Economics & Finance, Taylor & Francis Journals, vol. 10(1), pages 2095766-209, December.
    3. Mesele Belay Zegeye & Teshager Mazengia Asratie & Dagmawit Ketsela Getahun & Mahlet Getahun Deredera, 2023. "Impact of climate change adaptation practices on crop productivity: evidence from North Shewa Zone, Amhara region, Ethiopia," Letters in Spatial and Resource Sciences, Springer, vol. 16(1), pages 1-24, December.
    4. Jun Wen & Lingxiao Li & Xinxin Zhao & Chenyang Jiao & Wenjie Li, 2022. "How Government Size Expansion Can Affect Green Innovation—An Empirical Analysis of Data on Cross-Country Green Patent Filings," IJERPH, MDPI, vol. 19(12), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xun Su & Minpeng Chen, 2022. "Econometric Approaches That Consider Farmers’ Adaptation in Estimating the Impacts of Climate Change on Agriculture: A Review," Sustainability, MDPI, vol. 14(21), pages 1-23, October.
    2. Moretti, Michele & Vanschoenwinkel, Janka & Van Passel, Steven, 2021. "Accounting for externalities in cross-sectional economic models of climate change impacts," Ecological Economics, Elsevier, vol. 185(C).
    3. Bareille, François & Chakir, Raja, 2023. "The impact of climate change on agriculture: A repeat-Ricardian analysis," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    4. Abdul Quddoos & Klaus Salhofer & Ulrich B. Morawetz, 2023. "Utilising farm‐level panel data to estimate climate change impacts and adaptation potentials," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(1), pages 75-99, February.
    5. Emanuele Massetti & Steven Van Passel & Camila Apablaza, 2018. "Is Western European Agriculture Resilient to High Temperatures?," CESifo Working Paper Series 7286, CESifo.
    6. Farnaz Pourzand & Kendom Bell, 2021. "How climate affects agricultural land values in Aotearoa New Zealand," Working Papers 21_16, Motu Economic and Public Policy Research.
    7. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    8. Huang, Kaixing & Zhao, Hong & Huang, Jikun & Wang, Jinxia & Findlay, Christopher, 2020. "The impact of climate change on the labor allocation: Empirical evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    9. Geoffrey Norman Tumwine & Razack B Lokina & John Mary Matovu, 2019. "The Effect of Climate Change on Agricultural Crop Returns in Uganda," Journal of Economics and Behavioral Studies, AMH International, vol. 11(4), pages 71-87.
    10. Ariel Ortiz‐Bobea, 2020. "The Role of Nonfarm Influences in Ricardian Estimates of Climate Change Impacts on US Agriculture," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 934-959, May.
    11. Chau Trinh Nguyen & Frank Scrimgeour, 2022. "Measuring the impact of climate change on agriculture in Vietnam: A panel Ricardian analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 53(1), pages 37-51, January.
    12. B. James Deaton & Chad Lawley, 2022. "A survey of literature examining farmland prices: A Canadian focus," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 70(2), pages 95-121, June.
    13. Ariel Ortiz-Bobea, 2021. "Climate, Agriculture and Food," Papers 2105.12044, arXiv.org.
    14. Olper, Alessandro & Maugeri, Maurizio & Manara, Veronica & Raimondi, Valentina, 2021. "Weather, climate and economic outcomes: Evidence from Italy," Ecological Economics, Elsevier, vol. 189(C).
    15. Melese Mulu Baylie & Csaba Fogarassy, 2022. "Decision Analysis of the Adaptation of Households to Extreme Floods Using an Extended Protection Motivation Framework—A Case Study from Ethiopia," Land, MDPI, vol. 11(10), pages 1-20, October.
    16. Yoro Diallo & Sébastien Marchand & Etienne Espagne, 2019. "Impacts of extreme events on technical efficiency in Vietnamese agriculture," CIRED Working Papers halshs-02080285, HAL.
    17. Emediegwu, Lotanna E. & Ubabukoh, Chisom L., 2023. "Re-examining the impact of annual weather fluctuations on global livestock production," Ecological Economics, Elsevier, vol. 204(PA).
    18. Robert Becker Pickson & Ge He & Elliot Boateng, 2022. "Impacts of climate change on rice production: evidence from 30 Chinese provinces," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3907-3925, March.
    19. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    20. Hodjo, Manzamasso & Dalton, Timothy & Nakelse, Tebila, 2021. "Cereal Land Allocation Under Weather and Price Uncertainties in West Africa," 2021 Conference, August 17-31, 2021, Virtual 315177, International Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7243-:d:584235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.