IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i8p2429-d225540.html
   My bibliography  Save this article

Characterization of Renewable Energy Utilization Mode for Air-Environmental Quality Improvement through an Inexact Factorial Optimization Approach

Author

Listed:
  • Zhengping Liu

    (Development Research Center of the Ministry of Water Resources of P.R. China, Beijing 100038, China)

  • Wang Zhang

    (Development Research Center of the Ministry of Water Resources of P.R. China, Beijing 100038, China)

  • Hongxian Liu

    (Development Research Center of the Ministry of Water Resources of P.R. China, Beijing 100038, China)

  • Guohe Huang

    (Institute for Energy, Environment and Sustainability Communities, UR-NCEPU, University of Regina, Regina, SK S4S 0A2, Canada)

  • Jiliang Zhen

    (School of Science, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

  • Xin Qi

    (China Aviation Planning and Design Institute (Group) Co., Ltd., Beijing 100120, China)

Abstract

Energy-related environmental problems have been hot spot issues in regional energy system sustainable development. Thus, comprehensive planning of energy systems management is important for social and economic development, as well as environmental sustainability. In addition, uncertainties and complexities, as well as their potential interactions pose a great challenge for effective management in energy and environmental system. This study proposes a stochastic factorial energy systems management model to conduct uncertainties and risks in the energy systems, as well as handle their interaction effects among different environmental policies. The developed method can not only tackle uncertainties expressed as probability distributions and even interval values, but also be applied to determine decision alternatives associated with multiple economic penalties if the formulated environmental policy targets are violated. Meanwhile, by introducing the factorial technology, it can analyze a parameter’s impact on the system and their coordination effect. To verify the feasibility and effectiveness of the proposed method, the developed model was applied to a hypothetical case study for energy structure optimization under considering energy supply, SO 2 emissions reduction, and environmental quality requirements. Multiple facilities, related environmental pollutants, and energy demand levels were taken into account. Moreover, the key factors of the system and their interaction effect were discovered. The results indicated that the developed method can resolve meritorious uncertainties in decision-making and analysis, generate effective management programming under multi-levels of the proposed energy and environmental systems. The method can be used for supporting the adjustment for allocating fossil fuels and renewable energy resources, analyzing the tradeoff between conflicting economic and environmental objectives and formulating the local policies.

Suggested Citation

  • Zhengping Liu & Wang Zhang & Hongxian Liu & Guohe Huang & Jiliang Zhen & Xin Qi, 2019. "Characterization of Renewable Energy Utilization Mode for Air-Environmental Quality Improvement through an Inexact Factorial Optimization Approach," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2429-:d:225540
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/8/2429/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/8/2429/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Lin, Q.G. & Tan, Q., 2009. "Community-scale renewable energy systems planning under uncertainty--An interval chance-constrained programming approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 721-735, May.
    2. Udhayakumar, A. & Charles, V. & Kumar, Mukesh, 2011. "Stochastic simulation based genetic algorithm for chance constrained data envelopment analysis problems," Omega, Elsevier, vol. 39(4), pages 387-397, August.
    3. Min Hyeok LEE & Jong Seok LEE & Joo Young LEE & Yoon Ha KIM & Yoo Sung PARK & Kun Mo LEE, 2017. "Uncertainty Analysis of a GHG Emission Model Output Using the Block Bootstrap and Monte Carlo Simulation," Sustainability, MDPI, vol. 9(9), pages 1-12, August.
    4. Gilau, Asmerom M. & Van Buskirk, Robert & Small, Mitchell J., 2007. "Enabling optimal energy options under the Clean Development Mechanism," Energy Policy, Elsevier, vol. 35(11), pages 5526-5534, November.
    5. Wang, S. & Huang, G.H., 2015. "A multi-level Taguchi-factorial two-stage stochastic programming approach for characterization of parameter uncertainties and their interactions: An application to water resources management," European Journal of Operational Research, Elsevier, vol. 240(2), pages 572-581.
    6. Rong, Aiying & Lahdelma, Risto, 2007. "CO2 emissions trading planning in combined heat and power production via multi-period stochastic optimization," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1874-1895, February.
    7. S. M. Lewis & A. M. Dean, 2001. "Detection of interactions in experiments on large numbers of factors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 633-672.
    8. Lin, Q.G. & Huang, G.H., 2010. "An inexact two-stage stochastic energy systems planning model for managing greenhouse gas emission at a municipal level," Energy, Elsevier, vol. 35(5), pages 2270-2280.
    9. Zare M., Yahia & Daneshmand, Ahmad, 1995. "A linear approximation method for solving a special class of the chance constrained programming problem," European Journal of Operational Research, Elsevier, vol. 80(1), pages 213-225, January.
    10. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
    11. Mellit, A. & Benghanem, M. & Kalogirou, S.A., 2007. "Modeling and simulation of a stand-alone photovoltaic system using an adaptive artificial neural network: Proposition for a new sizing procedure," Renewable Energy, Elsevier, vol. 32(2), pages 285-313.
    12. Florides, G.A & Kalogirou, S.A & Tassou, S.A & Wrobel, L.C, 2000. "Modeling of the modern houses of Cyprus and energy consumption analysis," Energy, Elsevier, vol. 25(10), pages 915-937.
    13. Quanzhong Zhang & Haiyan Wei & Zefang Zhao & Jing Liu & Qiao Ran & Junhong Yu & Wei Gu, 2018. "Optimization of the Fuzzy Matter Element Method for Predicting Species Suitability Distribution Based on Environmental Data," Sustainability, MDPI, vol. 10(10), pages 1-16, September.
    14. Pettersson, Fredrik, 2007. "Carbon pricing and the diffusion of renewable power generation in Eastern Europe: A linear programming approach," Energy Policy, Elsevier, vol. 35(4), pages 2412-2425, April.
    15. Zhou, Yang & Huang, Guo H. & Yang, Boting, 2013. "Water resources management under multi-parameter interactions: A factorial multi-stage stochastic programming approach," Omega, Elsevier, vol. 41(3), pages 559-573.
    16. Li Yao & Xiuli Wang & Tao Qian & Shixiong Qi & Chengzhi Zhu, 2018. "Robust Day-Ahead Scheduling of Electricity and Natural Gas Systems via a Risk-Averse Adjustable Uncertainty Set Approach," Sustainability, MDPI, vol. 10(11), pages 1-16, October.
    17. Xinxuan Cheng & Longfei Fan & Jiachen Wang, 2018. "Can Energy Structure Optimization, Industrial Structure Changes, Technological Improvements, and Central and Local Governance Effectively Reduce Atmospheric Pollution in the Beijing–Tianjin–Hebei Area," Sustainability, MDPI, vol. 10(3), pages 1-16, February.
    18. Watanabe, Tsunemi & Ellis, Hugh, 1994. "A joint chance-constrained programming model with row dependence," European Journal of Operational Research, Elsevier, vol. 77(2), pages 325-343, September.
    19. Li, Y.F. & Li, Y.P. & Huang, G.H. & Chen, X., 2010. "Energy and environmental systems planning under uncertainty--An inexact fuzzy-stochastic programming approach," Applied Energy, Elsevier, vol. 87(10), pages 3189-3211, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, S. & Huang, G.H., 2014. "An integrated approach for water resources decision making under interactive and compound uncertainties," Omega, Elsevier, vol. 44(C), pages 32-40.
    2. Wang, Xingwei & Cai, Yanpeng & Chen, Jiajun & Dai, Chao, 2013. "A grey-forecasting interval-parameter mixed-integer programming approach for integrated electric-environmental management–A case study of Beijing," Energy, Elsevier, vol. 63(C), pages 334-344.
    3. Wu, C.B. & Huang, G.H. & Li, W. & Xie, Y.L. & Xu, Y., 2015. "Multistage stochastic inexact chance-constraint programming for an integrated biomass-municipal solid waste power supply management under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1244-1254.
    4. Yulei Xie & Linrui Wang & Guohe Huang & Dehong Xia & Ling Ji, 2018. "A Stochastic Inexact Robust Model for Regional Energy System Management and Emission Reduction Potential Analysis—A Case Study of Zibo City, China," Energies, MDPI, vol. 11(8), pages 1-24, August.
    5. Changyu Zhou & Guohe Huang & Jiapei Chen, 2018. "A Multi-Objective Energy and Environmental Systems Planning Model: Management of Uncertainties and Risks for Shanxi Province, China," Energies, MDPI, vol. 11(10), pages 1-21, October.
    6. Niknam, Taher & Narimani, Mohammad rasoul & Jabbari, Masoud & Malekpour, Ahmad Reza, 2011. "A modified shuffle frog leaping algorithm for multi-objective optimal power flow," Energy, Elsevier, vol. 36(11), pages 6420-6432.
    7. Wang, S. & Huang, G.H., 2015. "A multi-level Taguchi-factorial two-stage stochastic programming approach for characterization of parameter uncertainties and their interactions: An application to water resources management," European Journal of Operational Research, Elsevier, vol. 240(2), pages 572-581.
    8. Song, Tangnyu & Huang, Guohe & Zhou, Xiong & Wang, Xiuquan, 2018. "An inexact two-stage fractional energy systems planning model," Energy, Elsevier, vol. 160(C), pages 275-289.
    9. Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.
    10. Huang, G. H., 1998. "A hybrid inexact-stochastic water management model," European Journal of Operational Research, Elsevier, vol. 107(1), pages 137-158, May.
    11. Li, G.C. & Huang, G.H. & Lin, Q.G. & Zhang, X.D. & Tan, Q. & Chen, Y.M., 2011. "Development of a GHG-mitigation oriented inexact dynamic model for regional energy system management," Energy, Elsevier, vol. 36(5), pages 3388-3398.
    12. Zhou, Y. & Li, Y.P. & Huang, G.H., 2015. "Planning sustainable electric-power system with carbon emission abatement through CDM under uncertainty," Applied Energy, Elsevier, vol. 140(C), pages 350-364.
    13. Chen, F. & Huang, G.H. & Fan, Y.R. & Chen, J.P., 2017. "A copula-based fuzzy chance-constrained programming model and its application to electric power generation systems planning," Applied Energy, Elsevier, vol. 187(C), pages 291-309.
    14. Wu, Zhibin & Xu, Jiuping, 2013. "Predicting and optimization of energy consumption using system dynamics-fuzzy multiple objective programming in world heritage areas," Energy, Elsevier, vol. 49(C), pages 19-31.
    15. Li, Zhong & Huang, Gordon & Zhang, Yimei & Li, Yongping, 2013. "Inexact two-stage stochastic credibility constrained programming for water quality management," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 122-132.
    16. Zhang, Xiaoyue & Huang, Guohe & Xie, Yulei & Liu, Lirong & Song, Tangnyu, 2022. "A coupled non-deterministic optimization and mixed-level factorial analysis model for power generation expansion planning – A case study of Jing-Jin-Ji metropolitan region, China," Applied Energy, Elsevier, vol. 311(C).
    17. Chongfeng Ren & Hongbo Zhang, 2019. "An Inexact Optimization Model for Crop Area Under Multiple Uncertainties," IJERPH, MDPI, vol. 16(14), pages 1-20, July.
    18. Dong, C. & Huang, G.H. & Cai, Y.P. & Xu, Y., 2011. "An interval-parameter minimax regret programming approach for power management systems planning under uncertainty," Applied Energy, Elsevier, vol. 88(8), pages 2835-2845, August.
    19. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    20. Guan, Panbo & Huang, Guohe & Wu, Chuanbao & Wang, Linrui & Li, Chaoci & Wang, Yuanyi, 2019. "Analysis of emission taxes levying on regional electric power structure adjustment with an inexact optimization model - A case study of Zibo, China," Energy Economics, Elsevier, vol. 84(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2429-:d:225540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.