IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v84y2019ics014098831930266x.html
   My bibliography  Save this article

Analysis of emission taxes levying on regional electric power structure adjustment with an inexact optimization model - A case study of Zibo, China

Author

Listed:
  • Guan, Panbo
  • Huang, Guohe
  • Wu, Chuanbao
  • Wang, Linrui
  • Li, Chaoci
  • Wang, Yuanyi

Abstract

In this study, an inexact two-stage chance-constrained programming (ITSCCP) model was provided for multiple electrical power system supply and demand management in Zibo City under uncertainties. Three scenarios about the electric power structure adjustment, renewable power generation, and the emission taxes were designed. Methods of two-stage stochastic programming (TSP) and inexact chance-constrained programming (ICCP) were incorporated into the developed model to tackle uncertainties in terms of various cost coefficients, decision maker's risk attitude which was described by interval values and probability distributions. Moreover, under the objective of cost minimize, the electrical power generation planning for each terms under different feasibility degrees (violating constraints or available resources situations) can be obtained. The results indicated that higher probability of violating system constraints would increase risk of system, but lower the total cost; the proportion of optimized thermal power generation and imported electricity would decrease, which could promote the energy conservation and emissions reduction in some degree. At the same time, the model results are valuable for decision-makers to tackle the uncertainty of the power generation schemes within a complicated energy system and make a desired compromise between the satisfaction degree of the economic benefits and feasibility degree of constraints.

Suggested Citation

  • Guan, Panbo & Huang, Guohe & Wu, Chuanbao & Wang, Linrui & Li, Chaoci & Wang, Yuanyi, 2019. "Analysis of emission taxes levying on regional electric power structure adjustment with an inexact optimization model - A case study of Zibo, China," Energy Economics, Elsevier, vol. 84(C).
  • Handle: RePEc:eee:eneeco:v:84:y:2019:i:c:s014098831930266x
    DOI: 10.1016/j.eneco.2019.104485
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098831930266X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2019.104485?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cristóbal, Jorge & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Irabien, Angel, 2012. "Multi-objective optimization of coal-fired electricity production with CO2 capture," Applied Energy, Elsevier, vol. 98(C), pages 266-272.
    2. Lund, Henrik & Munster, Ebbe, 2006. "Integrated energy systems and local energy markets," Energy Policy, Elsevier, vol. 34(10), pages 1152-1160, July.
    3. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Lin, Q.G. & Tan, Q., 2009. "Community-scale renewable energy systems planning under uncertainty--An interval chance-constrained programming approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 721-735, May.
    4. Chen, W.T. & Li, Y.P. & Huang, G.H. & Chen, X. & Li, Y.F., 2010. "A two-stage inexact-stochastic programming model for planning carbon dioxide emission trading under uncertainty," Applied Energy, Elsevier, vol. 87(3), pages 1033-1047, March.
    5. Arent, Doug & Pless, Jacquelyn & Mai, Trieu & Wiser, Ryan & Hand, Maureen & Baldwin, Sam & Heath, Garvin & Macknick, Jordan & Bazilian, Morgan & Schlosser, Adam & Denholm, Paul, 2014. "Implications of high renewable electricity penetration in the U.S. for water use, greenhouse gas emissions, land-use, and materials supply," Applied Energy, Elsevier, vol. 123(C), pages 368-377.
    6. Dubreuil, Aurelie & Assoumou, Edi & Bouckaert, Stephanie & Selosse, Sandrine & Maı¨zi, Nadia, 2013. "Water modeling in an energy optimization framework – The water-scarce middle east context," Applied Energy, Elsevier, vol. 101(C), pages 268-279.
    7. Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.
    8. Wang, Can & Ye, Minhua & Cai, Wenjia & Chen, Jining, 2014. "The value of a clear, long-term climate policy agenda: A case study of China’s power sector using a multi-region optimization model," Applied Energy, Elsevier, vol. 125(C), pages 276-288.
    9. Wu, C.B. & Huang, G.H. & Li, W. & Xie, Y.L. & Xu, Y., 2015. "Multistage stochastic inexact chance-constraint programming for an integrated biomass-municipal solid waste power supply management under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1244-1254.
    10. Yeo, In-Ae & Yoon, Seong-Hwan & Yee, Jurng-Jae, 2013. "Development of an Environment and energy Geographical Information System (E-GIS) construction model to support environmentally friendly urban planning," Applied Energy, Elsevier, vol. 104(C), pages 723-739.
    11. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "Planning regional energy system in association with greenhouse gas mitigation under uncertainty," Applied Energy, Elsevier, vol. 88(3), pages 599-611, March.
    12. Klaassen, Ger & Riahi, Keywan, 2007. "Internalizing externalities of electricity generation: An analysis with MESSAGE-MACRO," Energy Policy, Elsevier, vol. 35(2), pages 815-827, February.
    13. Herrera, I. & De Ruyck, J. & Ocaña, V.S. & Rubio, M. & Martínez, R.M. & Núñez, V., 2013. "Environmental impact of decentralized power generation in Santa Clara City, Cuba: An integrated assessment based on technological and human health risk indicators," Applied Energy, Elsevier, vol. 109(C), pages 24-35.
    14. Xie, Y.L. & Li, Y.P. & Huang, G.H. & Li, Y.F., 2010. "An interval fixed-mix stochastic programming method for greenhouse gas mitigation in energy systems under uncertainty," Energy, Elsevier, vol. 35(12), pages 4627-4644.
    15. Trianni, Andrea & Cagno, Enrico & De Donatis, Alessio, 2014. "A framework to characterize energy efficiency measures," Applied Energy, Elsevier, vol. 118(C), pages 207-220.
    16. Zhou, Xiong & Huang, Guohe & Zhu, Hua & Chen, Jiapei & Xu, Jinliang, 2015. "Chance-constrained two-stage fractional optimization for planning regional energy systems in British Columbia, Canada," Applied Energy, Elsevier, vol. 154(C), pages 663-677.
    17. Li, Y.F. & Li, Y.P. & Huang, G.H. & Chen, X., 2010. "Energy and environmental systems planning under uncertainty--An inexact fuzzy-stochastic programming approach," Applied Energy, Elsevier, vol. 87(10), pages 3189-3211, October.
    18. Dawei Bai & Tamra Carpenter & John Mulvey, 1997. "Making a Case for Robust Optimization Models," Management Science, INFORMS, vol. 43(7), pages 895-907, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cong Chen & Lei Yu & Xueting Zeng & Guohe Huang & Yongping Li, 2020. "Planning an Energy–Water–Environment Nexus System in Coal-Dependent Regions under Uncertainties," Energies, MDPI, vol. 13(1), pages 1-40, January.
    2. Yang Zhang & Zhenghui Fu & Yulei Xie & Qing Hu & Zheng Li & Huaicheng Guo, 2020. "A Comprehensive Forecasting–Optimization Analysis Framework for Environmental-Oriented Power System Management—A Case Study of Harbin City, China," Sustainability, MDPI, vol. 12(10), pages 1-26, May.
    3. Rezgar FEIZI & Sahar AMIDI & Thais NUNEZ-ROCHA & Isabelle RABAUD, 2022. "Carbon Tax and Emissions Transfer: a Spatial Analysis," LEO Working Papers / DR LEO 2965, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.
    2. Yulei Xie & Linrui Wang & Guohe Huang & Dehong Xia & Ling Ji, 2018. "A Stochastic Inexact Robust Model for Regional Energy System Management and Emission Reduction Potential Analysis—A Case Study of Zibo City, China," Energies, MDPI, vol. 11(8), pages 1-24, August.
    3. Wang, Xingwei & Cai, Yanpeng & Chen, Jiajun & Dai, Chao, 2013. "A grey-forecasting interval-parameter mixed-integer programming approach for integrated electric-environmental management–A case study of Beijing," Energy, Elsevier, vol. 63(C), pages 334-344.
    4. Wu, Zhibin & Xu, Jiuping, 2013. "Predicting and optimization of energy consumption using system dynamics-fuzzy multiple objective programming in world heritage areas," Energy, Elsevier, vol. 49(C), pages 19-31.
    5. Chen, C. & Li, Y.P. & Huang, G.H. & Zhu, Y., 2012. "An inexact robust nonlinear optimization method for energy systems planning under uncertainty," Renewable Energy, Elsevier, vol. 47(C), pages 55-66.
    6. Piao, M.J. & Li, Y.P. & Huang, G.H. & Nie, S., 2015. "Risk analysis for Shanghai's electric power system under multiple uncertainties," Energy, Elsevier, vol. 87(C), pages 104-119.
    7. Chen, C. & Li, Y.P. & Huang, G.H., 2013. "An inexact robust optimization method for supporting carbon dioxide emissions management in regional electric-power systems," Energy Economics, Elsevier, vol. 40(C), pages 441-456.
    8. Jin, S.W. & Li, Y.P. & Huang, G.H. & Nie, S., 2018. "Analyzing the performance of clean development mechanism for electric power systems under uncertain environment," Renewable Energy, Elsevier, vol. 123(C), pages 382-397.
    9. Guangxiao Hu & Xiaoming Ma & Junping Ji, 2017. "A Stochastic Optimization Model for Carbon Mitigation Path under Demand Uncertainty of the Power Sector in Shenzhen, China," Sustainability, MDPI, vol. 9(11), pages 1-12, October.
    10. Song, Tangnyu & Huang, Guohe & Zhou, Xiong & Wang, Xiuquan, 2018. "An inexact two-stage fractional energy systems planning model," Energy, Elsevier, vol. 160(C), pages 275-289.
    11. Li, G.C. & Huang, G.H. & Lin, Q.G. & Zhang, X.D. & Tan, Q. & Chen, Y.M., 2011. "Development of a GHG-mitigation oriented inexact dynamic model for regional energy system management," Energy, Elsevier, vol. 36(5), pages 3388-3398.
    12. Zhen, J.L. & Huang, G.H. & Li, W. & Liu, Z.P. & Wu, C.B., 2017. "An inexact optimization model for regional electric system steady operation management considering integrated renewable resources," Energy, Elsevier, vol. 135(C), pages 195-209.
    13. Zhu, Y. & Li, Y.P. & Huang, G.H., 2013. "Planning carbon emission trading for Beijing's electric power systems under dual uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 113-128.
    14. Chen, F. & Huang, G.H. & Fan, Y.R. & Chen, J.P., 2017. "A copula-based fuzzy chance-constrained programming model and its application to electric power generation systems planning," Applied Energy, Elsevier, vol. 187(C), pages 291-309.
    15. Xie, Y.L. & Xia, D.H. & Ji, L. & Zhou, W.N. & Huang, G.H., 2017. "An inexact cost-risk balanced model for regional energy structure adjustment management and resources environmental effect analysis-a case study of Shandong province, China," Energy, Elsevier, vol. 126(C), pages 374-391.
    16. Tsai, Ming-Tang & Yen, Chih-Wei, 2011. "The influence of carbon dioxide trading scheme on economic dispatch of generators," Applied Energy, Elsevier, vol. 88(12), pages 4811-4816.
    17. Jin, S.W. & Li, Y.P. & Nie, S. & Sun, J., 2017. "The potential role of carbon capture and storage technology in sustainable electric-power systems under multiple uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 467-480.
    18. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty," Energy Policy, Elsevier, vol. 39(7), pages 4313-4324, July.
    19. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
    20. Lee, Suh-Young & Lee, Jae-Uk & Lee, In-Beum & Han, Jeehoon, 2017. "Design under uncertainty of carbon capture and storage infrastructure considering cost, environmental impact, and preference on risk," Applied Energy, Elsevier, vol. 189(C), pages 725-738.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:84:y:2019:i:c:s014098831930266x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.