IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v80y2017icp467-480.html
   My bibliography  Save this article

The potential role of carbon capture and storage technology in sustainable electric-power systems under multiple uncertainties

Author

Listed:
  • Jin, S.W.
  • Li, Y.P.
  • Nie, S.
  • Sun, J.

Abstract

One of the problems facing researchers in managing carbon capture and storage (CCS) technology is that complex energy systems accommodate the relevant social, economic, environmental, and political factors. Many system behaviors, factors, and parameters are associated with uncertainties. Effective management of such a complex system involves balancing tradeoffs among these key influencing factors under multiple uncertainties. In this study, an interval-fuzzy stochastic programming (IFSP) method is developed to deal with multiple uncertainties expressed as fuzzy sets, intervals and probability distributions. An IFSP-CCS model is formulated to plan CCS technology of power system in Bayingolin Mongol Autonomous Prefecture (Bazhou). Policy scenarios are introduced to investigate the potential role of CCS technology and sensitivity analyses are performed to assess the influence of various economic factors on system cost. Results indicate various uncertainties existed in CCS development and the related factors can affect the modeling outputs. Results also reveal that CO2-mitigation constraint can induce the development of renewable energy and CCS, and CCS technology can make a great contribution to CO2 emission reductions from a long-term planning perspective. The findings can provide support for CCS investment in fossil-fuel-dominated electric-power system and offer useful information for policy investigation under multiple uncertainties.

Suggested Citation

  • Jin, S.W. & Li, Y.P. & Nie, S. & Sun, J., 2017. "The potential role of carbon capture and storage technology in sustainable electric-power systems under multiple uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 467-480.
  • Handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:467-480
    DOI: 10.1016/j.rser.2017.05.230
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117308675
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.230?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asian Development Bank (ADB), 2013. "Prospects for Carbon Capture and Storage in Southeast Asia," ADB Reports RPT135683-2, Asian Development Bank (ADB), revised 05 Feb 2014.
    2. Viebahn, Peter & Vallentin, Daniel & Höller, Samuel, 2015. "Prospects of carbon capture and storage (CCS) in China’s power sector – An integrated assessment," Applied Energy, Elsevier, vol. 157(C), pages 229-244.
    3. Maqsood, Imran & Huang, Guo H. & Scott Yeomans, Julian, 2005. "An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 208-225, November.
    4. Zhang, Xian & Wang, Xingwei & Chen, Jiajun & Xie, Xi & Wang, Ke & Wei, Yiming, 2014. "A novel modeling based real option approach for CCS investment evaluation under multiple uncertainties," Applied Energy, Elsevier, vol. 113(C), pages 1059-1067.
    5. Sadeghi, Mehdi & Mirshojaeian Hosseini, Hossein, 2006. "Energy supply planning in Iran by using fuzzy linear programming approach (regarding uncertainties of investment costs)," Energy Policy, Elsevier, vol. 34(9), pages 993-1003, June.
    6. Chen, W.T. & Li, Y.P. & Huang, G.H. & Chen, X. & Li, Y.F., 2010. "A two-stage inexact-stochastic programming model for planning carbon dioxide emission trading under uncertainty," Applied Energy, Elsevier, vol. 87(3), pages 1033-1047, March.
    7. Koronaki, I.P. & Prentza, L. & Papaefthimiou, V., 2015. "Modeling of CO2 capture via chemical absorption processes − An extensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 547-566.
    8. Wang, Can & Zhang, Weishi & Cai, Wenjia & Xie, Xi, 2013. "Employment impacts of CDM projects in China's power sector," Energy Policy, Elsevier, vol. 59(C), pages 481-491.
    9. Verdejo, Humberto & Awerkin, Almendra & Saavedra, Eugenio & Kliemann, Wolfgang & Vargas, Luis, 2016. "Stochastic modeling to represent wind power generation and demand in electric power system based on real data," Applied Energy, Elsevier, vol. 173(C), pages 283-295.
    10. Zhou, Wenji & Zhu, Bing & Fuss, Sabine & Szolgayová, Jana & Obersteiner, Michael & Fei, Weiyang, 2010. "Uncertainty modeling of CCS investment strategy in China's power sector," Applied Energy, Elsevier, vol. 87(7), pages 2392-2400, July.
    11. Lohwasser, Richard & Madlener, Reinhard, 2012. "Economics of CCS for coal plants: Impact of investment costs and efficiency on market diffusion in Europe," Energy Economics, Elsevier, vol. 34(3), pages 850-863.
    12. Nabavieh, Alireza & Gholamiangonabadi, Davoud & Ahangaran, Ali Asghar, 2015. "Dynamic changes in CO2 emission performance of different types of Iranian fossil-fuel power plants," Energy Economics, Elsevier, vol. 52(PA), pages 142-150.
    13. Cai, Y.P. & Huang, G.H. & Tan, Q. & Yang, Z.F., 2011. "An integrated approach for climate-change impact analysis and adaptation planning under multi-level uncertainties. Part I: Methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2779-2790, August.
    14. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "Planning regional energy system in association with greenhouse gas mitigation under uncertainty," Applied Energy, Elsevier, vol. 88(3), pages 599-611, March.
    15. Sreenivasulu, B. & Gayatri, D.V. & Sreedhar, I. & Raghavan, K.V., 2015. "A journey into the process and engineering aspects of carbon capture technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1324-1350.
    16. Ang, B.W. & Su, Bin, 2016. "Carbon emission intensity in electricity production: A global analysis," Energy Policy, Elsevier, vol. 94(C), pages 56-63.
    17. Hope, Aimie L.B. & Jones, Christopher R., 2014. "The impact of religious faith on attitudes to environmental issues and Carbon Capture and Storage (CCS) technologies: A mixed methods study," Technology in Society, Elsevier, vol. 38(C), pages 48-59.
    18. Li, Y.P. & Liu, J. & Huang, G.H., 2014. "A hybrid fuzzy-stochastic programming method for water trading within an agricultural system," Agricultural Systems, Elsevier, vol. 123(C), pages 71-83.
    19. Mendoza, Guillermo A. & Bruce Bare, B. & Zhou, Zehai, 1993. "A fuzzy multiple objective linear programming approach to forest planning under uncertainty," Agricultural Systems, Elsevier, vol. 41(3), pages 257-274.
    20. van Alphen, Klaas & Noothout, Paul M. & Hekkert, Marko P. & Turkenburg, Wim C., 2010. "Evaluating the development of carbon capture and storage technologies in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 971-986, April.
    21. Bistline, John E., 2015. "Electric sector capacity planning under uncertainty: Climate policy and natural gas in the US," Energy Economics, Elsevier, vol. 51(C), pages 236-251.
    22. Middleton, Richard S. & Eccles, Jordan K., 2013. "The complex future of CO2 capture and storage: Variable electricity generation and fossil fuel power," Applied Energy, Elsevier, vol. 108(C), pages 66-73.
    23. Raugei, Marco & Leccisi, Enrica, 2016. "A comprehensive assessment of the energy performance of the full range of electricity generation technologies deployed in the United Kingdom," Energy Policy, Elsevier, vol. 90(C), pages 46-59.
    24. Cai, Y.P. & Huang, G.H. & Tan, Q. & Liu, L., 2011. "An integrated approach for climate-change impact analysis and adaptation planning under multi-level uncertainties. Part II. Case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3051-3073, August.
    25. Q. Lin & G. Huang, 2011. "Interval-fuzzy stochastic optimization for regional energy systems planning and greenhouse-gas emission management under uncertainty—a case study for the Province of Ontario, Canada," Climatic Change, Springer, vol. 104(2), pages 353-378, January.
    26. Fuss, Sabine & Szolgayová, Jana, 2010. "Fuel price and technological uncertainty in a real options model for electricity planning," Applied Energy, Elsevier, vol. 87(9), pages 2938-2944, September.
    27. Aien, Morteza & Hajebrahimi, Ali & Fotuhi-Firuzabad, Mahmud, 2016. "A comprehensive review on uncertainty modeling techniques in power system studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1077-1089.
    28. Sreedhar, I. & Vaidhiswaran, R. & Kamani, Bansi. M. & Venugopal, A., 2017. "Process and engineering trends in membrane based carbon capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 659-684.
    29. Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
    30. Koo, Jamin & Han, Kyusang & Yoon, En Sup, 2011. "Integration of CCS, emissions trading and volatilities of fuel prices into sustainable energy planning, and its robust optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 665-672, January.
    31. Muela, E. & Schweickardt, G. & Garces, F., 2007. "Fuzzy possibilistic model for medium-term power generation planning with environmental criteria," Energy Policy, Elsevier, vol. 35(11), pages 5643-5655, November.
    32. Parvizimosaed, M. & Farmani, F. & Monsef, H. & Rahimi-Kian, A., 2017. "A multi-stage Smart Energy Management System under multiple uncertainties: A data mining approach," Renewable Energy, Elsevier, vol. 102(PA), pages 178-189.
    33. Li, Y.F. & Li, Y.P. & Huang, G.H. & Chen, X., 2010. "Energy and environmental systems planning under uncertainty--An inexact fuzzy-stochastic programming approach," Applied Energy, Elsevier, vol. 87(10), pages 3189-3211, October.
    34. Abadie, Luis M. & Chamorro, José M., 2008. "European CO2 prices and carbon capture investments," Energy Economics, Elsevier, vol. 30(6), pages 2992-3015, November.
    35. Višković, Alfredo & Franki, Vladimir & Valentić, Vladimir, 2014. "CCS (carbon capture and storage) investment possibility in South East Europe: A case study for Croatia," Energy, Elsevier, vol. 70(C), pages 325-337.
    36. Cheng, Rui & Xu, Zhaofeng & Liu, Pei & Wang, Zhe & Li, Zheng & Jones, Ian, 2015. "A multi-region optimization planning model for China’s power sector," Applied Energy, Elsevier, vol. 137(C), pages 413-426.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhumika Gupta & Salil K. Sen, 2019. "Carbon Capture Usage and Storage with Scale-up: Energy Finance through Bricolage Deploying the Co-integration Methodology," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 146-153.
    2. Nie, S. & Huang, Z.C. & Huang, G.H. & Yu, L. & Liu, J., 2018. "Optimization of electric power systems with cost minimization and environmental-impact mitigation under multiple uncertainties," Applied Energy, Elsevier, vol. 221(C), pages 249-267.
    3. Bhumika Gupta & Salil K. Sen, 2019. "Carbon capture usage and storage with scale-up : energy finance through bricolage deploying the co-integration methodology," Post-Print hal-02559884, HAL.
    4. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    5. Suo, C. & Li, Y.P. & Mei, H. & Lv, J. & Sun, J. & Nie, S., 2021. "Towards sustainability for China's energy system through developing an energy-climate-water nexus model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Yu, L. & Li, Y.P. & Huang, G.H. & Fan, Y.R. & Nie, S., 2018. "A copula-based flexible-stochastic programming method for planning regional energy system under multiple uncertainties: A case study of the urban agglomeration of Beijing and Tianjin," Applied Energy, Elsevier, vol. 210(C), pages 60-74.
    7. Mei, H. & Li, Y.P. & Suo, C. & Ma, Y. & Lv, J., 2020. "Analyzing the impact of climate change on energy-economy-carbon nexus system in China," Applied Energy, Elsevier, vol. 262(C).
    8. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    9. Kun Mo LEE & Min Hyeok LEE, 2021. "Uncertainty of the Electricity Emission Factor Incorporating the Uncertainty of the Fuel Emission Factors," Energies, MDPI, vol. 14(18), pages 1-14, September.
    10. Wiesberg, Igor Lapenda & Brigagão, George Victor & Araújo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2019. "Carbon dioxide management via exergy-based sustainability assessment: Carbon Capture and Storage versus conversion to methanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 720-732.
    11. Jin, Shuwei & Li, Yongping, 2023. "Analyzing the performance of electricity, heating, and cooling supply nexus in a hybrid energy system of airport under uncertainty," Energy, Elsevier, vol. 272(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    2. Jin, S.W. & Li, Y.P. & Huang, G.H. & Nie, S., 2018. "Analyzing the performance of clean development mechanism for electric power systems under uncertain environment," Renewable Energy, Elsevier, vol. 123(C), pages 382-397.
    3. Wang, Xingwei & Cai, Yanpeng & Chen, Jiajun & Dai, Chao, 2013. "A grey-forecasting interval-parameter mixed-integer programming approach for integrated electric-environmental management–A case study of Beijing," Energy, Elsevier, vol. 63(C), pages 334-344.
    4. Zhu, Y. & Li, Y.P. & Huang, G.H., 2013. "Planning carbon emission trading for Beijing's electric power systems under dual uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 113-128.
    5. Wang, Xingwei & Cai, Yanpeng & Dai, Chao, 2014. "Evaluating China's biomass power production investment based on a policy benefit real options model," Energy, Elsevier, vol. 73(C), pages 751-761.
    6. Romano, Teresa & Fumagalli, Elena, 2018. "Greening the power generation sector: Understanding the role of uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 272-286.
    7. Zhang, Xinhua & Yang, Hongming & Yu, Qian & Qiu, Jing & Zhang, Yongxi, 2018. "Analysis of carbon-abatement investment for thermal power market in carbon-dispatching mode and policy recommendations," Energy, Elsevier, vol. 149(C), pages 954-966.
    8. Herui Cui & Tian Zhao & Ruirui Wu, 2018. "An Investment Feasibility Analysis of CCS Retrofit Based on a Two-Stage Compound Real Options Model," Energies, MDPI, vol. 11(7), pages 1-19, July.
    9. Xiping Wang & Hongdou Zhang, 2018. "Valuation of CCS investment in China's coal‐fired power plants based on a compound real options model," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(5), pages 978-988, October.
    10. Yang, Lin & Xu, Mao & Fan, Jingli & Liang, Xi & Zhang, Xian & Lv, Haodong & Wang, Dong, 2021. "Financing coal-fired power plant to demonstrate CCS (carbon capture and storage) through an innovative policy incentive in China," Energy Policy, Elsevier, vol. 158(C).
    11. Xiping Wang & Hongdou Zhang, 2018. "Optimal design of carbon tax to stimulate CCS investment in China's coal‐fired power plants: A real options analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(5), pages 863-875, October.
    12. Xiping Wang & Shaoyuan Qie, 2018. "Study on the investment timing of carbon capture and storage under different business modes," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(4), pages 639-649, August.
    13. Chen, F. & Huang, G.H. & Fan, Y.R. & Chen, J.P., 2017. "A copula-based fuzzy chance-constrained programming model and its application to electric power generation systems planning," Applied Energy, Elsevier, vol. 187(C), pages 291-309.
    14. Fan, Jing-Li & Xu, Mao & Li, Fengyu & Yang, Lin & Zhang, Xian, 2018. "Carbon capture and storage (CCS) retrofit potential of coal-fired power plants in China: The technology lock-in and cost optimization perspective," Applied Energy, Elsevier, vol. 229(C), pages 326-334.
    15. Dong, C. & Huang, G.H. & Cai, Y.P. & Xu, Y., 2011. "An interval-parameter minimax regret programming approach for power management systems planning under uncertainty," Applied Energy, Elsevier, vol. 88(8), pages 2835-2845, August.
    16. Zhang, Xian & Wang, Xingwei & Chen, Jiajun & Xie, Xi & Wang, Ke & Wei, Yiming, 2014. "A novel modeling based real option approach for CCS investment evaluation under multiple uncertainties," Applied Energy, Elsevier, vol. 113(C), pages 1059-1067.
    17. Tsai, Ming-Tang & Yen, Chih-Wei, 2011. "The influence of carbon dioxide trading scheme on economic dispatch of generators," Applied Energy, Elsevier, vol. 88(12), pages 4811-4816.
    18. Fan, Jing-Li & Xu, Mao & Yang, Lin & Zhang, Xian & Li, Fengyu, 2019. "How can carbon capture utilization and storage be incentivized in China? A perspective based on the 45Q tax credit provisions," Energy Policy, Elsevier, vol. 132(C), pages 1229-1240.
    19. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty," Energy Policy, Elsevier, vol. 39(7), pages 4313-4324, July.
    20. Mo, Jian-Lei & Schleich, Joachim & Zhu, Lei & Fan, Ying, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Energy Economics, Elsevier, vol. 52(PB), pages 255-264.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:467-480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.