IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i2p571-d133102.html
   My bibliography  Save this article

Optimal Coordination Strategy of Regional Vertical Emission Abatement Collaboration in a Low-Carbon Environment

Author

Listed:
  • Daming You

    (School of Business, Central South University, Changsha 410083, China
    Collaborative Innovation Center of Resource-Conserving & Environment-Friendly Society and Ecological Civilization, Central South University, Changsha 410083, China)

  • Ke Jiang

    (School of Business, Central South University, Changsha 410083, China
    Manchester Institute of Innovation Research, Alliance Manchester Business School, The University of Manchester, Manchester M13 9PL, UK)

  • Zhendong Li

    (Manchester Institute of Innovation Research, Alliance Manchester Business School, The University of Manchester, Manchester M13 9PL, UK
    College of Management and Economics, Tianjin University, Tianjin 300072, China)

Abstract

This study introduces a time factor into a low-carbon context, and supposes the contamination control state of local government and the ability of polluting enterprise to abate emissions as linear increasing functions in a regional low-carbon emission abatement cooperation chain. The local government effectuates and upholds the low-carbon development within the jurisdiction that is primarily seeking to transform regional economic development modes, while the polluting enterprise abates the amounts of emitted carbon in the entire period of product through simplifying production, facilitating decontamination, and adopting production technology, thus leading to less contamination. On that basis, we infer that the coordinated joint carbon reduction model and two decentralization contracts expound the dynamic coordination strategy for a regional cooperation chain in terms of vertical carbon abatement. Furthermore, feedback equilibrium strategies that are concerned with several diverse conditions are compared and analyzed. The main results show that a collaborative centralized contract is able to promote the regional low-carbon cooperation chain in order to achieve a win–win situation in both economic and environmental performance. Additionally, the optimal profits of the entire regional low-carbon cooperation channel under an integration scenario evidently outstrip that of two non-collaborative decentralization schemes. Eventually, the validity of the conclusions is verified with a case description and numerical simulation, and the sensitivity of the relevant parameters is analyzed in order to lay a theoretical foundation and thus facilitate the sustainable development of a regional low-carbon environment.

Suggested Citation

  • Daming You & Ke Jiang & Zhendong Li, 2018. "Optimal Coordination Strategy of Regional Vertical Emission Abatement Collaboration in a Low-Carbon Environment," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:571-:d:133102
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/2/571/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/2/571/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feifei Qin & Xiaoning Zhang, 2015. "Designing an Optimal Subsidy Scheme to Reduce Emissions for a Competitive Urban Transport Market," Sustainability, MDPI, vol. 7(9), pages 1-16, August.
    2. D.W.K. Yeung & L.A. Petrosyan, 2005. "Subgame Consistent Solutions of a Cooperative Stochastic Differential Game with Nontransferable Payoffs," Journal of Optimization Theory and Applications, Springer, vol. 124(3), pages 701-724, March.
    3. Montgomery, W. David, 1972. "Markets in licenses and efficient pollution control programs," Journal of Economic Theory, Elsevier, vol. 5(3), pages 395-418, December.
    4. Wei, Yi-Ming & Mi, Zhi-Fu & Huang, Zhimin, 2015. "Climate policy modeling: An online SCI-E and SSCI based literature review," Omega, Elsevier, vol. 57(PA), pages 70-84.
    5. Jorgensen, Steffen & Taboubi, Sihem & Zaccour, Georges, 2003. "Retail promotions with negative brand image effects: Is cooperation possible?," European Journal of Operational Research, Elsevier, vol. 150(2), pages 395-405, October.
    6. F. Wirl, 2007. "Social Interactions within a Dynamic Competitive Economy," Journal of Optimization Theory and Applications, Springer, vol. 133(3), pages 385-400, June.
    7. Dongxue Guo & Yi He & Yuanyuan Wu & Qingyun Xu, 2016. "Analysis of Supply Chain under Different Subsidy Policies of the Government," Sustainability, MDPI, vol. 8(12), pages 1-18, December.
    8. Dockner Engelbert J. & Van Long Ngo, 1993. "International Pollution Control: Cooperative versus Noncooperative Strategies," Journal of Environmental Economics and Management, Elsevier, vol. 25(1), pages 13-29, July.
    9. Bertinelli, Luisito & Camacho, Carmen & Zou, Benteng, 2014. "Carbon capture and storage and transboundary pollution: A differential game approach," European Journal of Operational Research, Elsevier, vol. 237(2), pages 721-728.
    10. Breton, Michele & Sokri, Abderrahmane & Zaccour, Georges, 2008. "Incentive equilibrium in an overlapping-generations environmental game," European Journal of Operational Research, Elsevier, vol. 185(2), pages 687-699, March.
    11. Eyland, Terry & Zaccour, Georges, 2014. "Carbon tariffs and cooperative outcomes," Energy Policy, Elsevier, vol. 65(C), pages 718-728.
    12. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    13. Zeng, Shihong & Nan, Xin & Liu, Chao & Chen, Jiuying, 2017. "The response of the Beijing carbon emissions allowance price (BJC) to macroeconomic and energy price indices," Energy Policy, Elsevier, vol. 106(C), pages 111-121.
    14. Yang, Lei & Zhang, Qin & Ji, Jingna, 2017. "Pricing and carbon emission reduction decisions in supply chains with vertical and horizontal cooperation," International Journal of Production Economics, Elsevier, vol. 191(C), pages 286-297.
    15. Jørgensen, Steffen & Zaccour, Georges, 2014. "A survey of game-theoretic models of cooperative advertising," European Journal of Operational Research, Elsevier, vol. 237(1), pages 1-14.
    16. Zhang, Zhaoguo & Jin, Xiaocui & Yang, Qingxiang & Zhang, Yi, 2013. "An empirical study on the institutional factors of energy conservation and emissions reduction: Evidence from listed companies in China," Energy Policy, Elsevier, vol. 57(C), pages 36-42.
    17. Wu, Jing & Chang, I-Shin & Yilihamu, Qimanguli & Zhou, Yu, 2017. "Study on the practice of public participation in environmental impact assessment by environmental non-governmental organizations in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 186-200.
    18. Su, Bin & Thomson, Elspeth, 2016. "China's carbon emissions embodied in (normal and processing) exports and their driving forces, 2006–2012," Energy Economics, Elsevier, vol. 59(C), pages 414-422.
    19. Zhao, Rui & Zhou, Xiao & Han, Jiaojie & Liu, Chengliang, 2016. "For the sustainable performance of the carbon reduction labeling policies under an evolutionary game simulation," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 262-274.
    20. Byung Duk Song & Young Dae Ko, 2017. "Effect of Inspection Policies and Residual Value of Collected Used Products: A Mathematical Model and Genetic Algorithm for a Closed-Loop Green Manufacturing System," Sustainability, MDPI, vol. 9(9), pages 1-14, September.
    21. Xia, X.H. & Hu, Y. & Chen, G.Q. & Alsaedi, A. & Hayat, T. & Wu, X.D., 2015. "Vertical specialization, global trade and energy consumption for an urban economy: A value added export perspective for Beijing," Ecological Modelling, Elsevier, vol. 318(C), pages 49-58.
    22. Yin, Jianhua & Zheng, Mingzheng & Chen, Jian, 2015. "The effects of environmental regulation and technical progress on CO2 Kuznets curve: An evidence from China," Energy Policy, Elsevier, vol. 77(C), pages 97-108.
    23. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    24. DeCanio, Stephen J. & Fremstad, Anders, 2013. "Game theory and climate diplomacy," Ecological Economics, Elsevier, vol. 85(C), pages 177-187.
    25. Zhifu Mi & Jing Meng & Dabo Guan & Yuli Shan & Malin Song & Yi-Ming Wei & Zhu Liu & Klaus Hubacek, 2017. "Chinese CO2 emission flows have reversed since the global financial crisis," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    26. Jorgensen, Steffen & Zaccour, Georges, 2001. "Time consistent side payments in a dynamic game of downstream pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 25(12), pages 1973-1987, December.
    27. Liming Zhang & Wei Yang & Yuan Yuan & Rui Zhou, 2017. "An Integrated Carbon Policy-Based Interactive Strategy for Carbon Reduction and Economic Development in a Construction Material Supply Chain," Sustainability, MDPI, vol. 9(11), pages 1-15, November.
    28. Yi, Hongtao & Feiock, Richard C. & Berry, Frances S., 2017. "Overcoming collective action barriers to energy sustainability: A longitudinal study of climate protection accord adoption by local governments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 339-346.
    29. Wei, Chu & Ni, Jinlan & Du, Limin, 2012. "Regional allocation of carbon dioxide abatement in China," China Economic Review, Elsevier, vol. 23(3), pages 552-565.
    30. Zeng, Shihong & Liu, Yuchen & Liu, Chao & Nan, Xin, 2017. "A review of renewable energy investment in the BRICS countries: History, models, problems and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 860-872.
    31. Chen, Qixin & Kang, Chongqing & Ming, Hao & Wang, Zeyu & Xia, Qing & Xu, Guoxin, 2014. "Assessing the low-carbon effects of inter-regional energy delivery in China's electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 671-683.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongmei Xu & Jiho Yoon & Myung Kyo Kim & Chwen Sheu, 2018. "Toward Supply Chain Sustainability: Governance and Implementation of Joint Sustainability Development," Sustainability, MDPI, vol. 10(5), pages 1-26, May.
    2. Yanqiu He & Hongchun Wang & Rou Chen & Shiqi Hou & Dingde Xu, 2022. "The Forms, Channels and Conditions of Regional Agricultural Carbon Emission Reduction Interaction: A Provincial Perspective in China," IJERPH, MDPI, vol. 19(17), pages 1-22, September.
    3. Chen-lung Yang & Suyuan Lien, 2018. "Governance Mechanisms for Green Supply Chain Partnership," Sustainability, MDPI, vol. 10(8), pages 1-15, July.
    4. Baogui Xin & Wei Peng & Minghe Sun, 2019. "Optimal Coordination Strategy for International Production Planning and Pollution Abating under Cap-and-Trade Regulations," IJERPH, MDPI, vol. 16(18), pages 1-21, September.
    5. Lili Kusumawati & Erni Setyowati & Agus Budi Purnomo, 2021. "Practical-Empirical Modeling on Envelope Design towards Sustainability in Tropical Architecture," Sustainability, MDPI, vol. 13(5), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ota, Toru & Kakinaka, Makoto & Kotani, Koji, 2018. "Demographic effects on residential electricity and city gas consumption in the aging society of Japan," Energy Policy, Elsevier, vol. 115(C), pages 503-513.
    2. Javier Frutos & Víctor Gatón & Paula M. López-Pérez & Guiomar Martín-Herrán, 2022. "Investment in Cleaner Technologies in a Transboundary Pollution Dynamic Game: A Numerical Investigation," Dynamic Games and Applications, Springer, vol. 12(3), pages 813-843, September.
    3. Javier Frutos & Guiomar Martín-Herrán, 2015. "Does Flexibility Facilitate Sustainability of Cooperation Over Time? A Case Study from Environmental Economics," Journal of Optimization Theory and Applications, Springer, vol. 165(2), pages 657-677, May.
    4. Sinha, Avik & Shahbaz, Muhammad & Balsalobre, Daniel, 2017. "Exploring the Relationship between Energy Usage Segregation and Environmental Degradation in N-11 Countries," MPRA Paper 81212, University Library of Munich, Germany, revised 07 Sep 2017.
    5. Guang Zhu & Gaozhi Pan & Weiwei Zhang, 2018. "Evolutionary Game Theoretic Analysis of Low Carbon Investment in Supply Chains under Governmental Subsidies," IJERPH, MDPI, vol. 15(11), pages 1-27, November.
    6. Hao Xu & Ming Luo, 2022. "Optimal Environmental Policy in a Dynamic Transboundary Pollution Game: Emission Standards, Taxes, and Permit Trading," Sustainability, MDPI, vol. 14(15), pages 1-25, July.
    7. Yongxi Yi & Min Yang & Chunyan Fu, 2021. "Analysis of multiple ecological compensation strategies for transboundary pollution control in a river basin," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(6), pages 1579-1590, September.
    8. David Yeung, 2014. "Dynamically consistent collaborative environmental management with production technique choices," Annals of Operations Research, Springer, vol. 220(1), pages 181-204, September.
    9. Feng, Tong & Du, Huibin & Zhang, Zengkai & Mi, Zhifu & Guan, Dabo & Zuo, Jian, 2020. "Carbon transfer within China: Insights from production fragmentation," Energy Economics, Elsevier, vol. 86(C).
    10. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
    11. Karray, Salma & Martín-Herrán, Guiomar & Zaccour, Georges, 2017. "Assessing the profitability of cooperative advertising programs in competing channels," International Journal of Production Economics, Elsevier, vol. 187(C), pages 142-158.
    12. Tang, Miaohan & Hong, Jingke & Liu, Guiwen & Shen, Geoffrey Qiping, 2019. "Exploring energy flows embodied in China's economy from the regional and sectoral perspectives via combination of multi-regional input–output analysis and a complex network approach," Energy, Elsevier, vol. 170(C), pages 1191-1201.
    13. Daozhi Zhao & Jiaqin Hao & Cejun Cao & Hongshuai Han, 2019. "Evolutionary Game Analysis of Three-Player for Low-Carbon Production Capacity Sharing," Sustainability, MDPI, vol. 11(11), pages 1-20, May.
    14. Benchekroun, H. & Ray Chaudhuri, A., 2010. "'The Voracity Effect' and Climate Change : The Impact of Clean Technologies," Discussion Paper 2010-97, Tilburg University, Center for Economic Research.
    15. Chang, Kai & Chen, Rongda & Chevallier, Julien, 2018. "Market fragmentation, liquidity measures and improvement perspectives from China's emissions trading scheme pilots," Energy Economics, Elsevier, vol. 75(C), pages 249-260.
    16. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Raouf Boucekkine & Carmen Camacho & Weihua Ruan & Benteng Zou, 2022. "Why and when coalitions split? An alternative analytical approach with an application to environmental agreements," Working Papers halshs-03676670, HAL.
    18. Tian, Kailan & Dietzenbacher, Erik & Yan, Bingqian & Duan, Yuwan, 2020. "Upgrading or downgrading: China's regional carbon emission intensity evolution and its determinants," Energy Economics, Elsevier, vol. 91(C).
    19. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
    20. He, Yi & Wang, Hang & Guo, Qiang & Xu, Qingyun, 2019. "Coordination through cooperative advertising in a two-period consumer electronics supply chain," Journal of Retailing and Consumer Services, Elsevier, vol. 50(C), pages 179-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:571-:d:133102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.