IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v12y2022i3d10.1007_s13235-022-00445-z.html
   My bibliography  Save this article

Investment in Cleaner Technologies in a Transboundary Pollution Dynamic Game: A Numerical Investigation

Author

Listed:
  • Javier Frutos

    (Universidad de Valladolid)

  • Víctor Gatón

    (Universidad de Valladolid)

  • Paula M. López-Pérez

    (Universidad de Valladolid)

  • Guiomar Martín-Herrán

    (Universidad de Valladolid)

Abstract

Within a noncooperative transboundary pollution dynamic game, we study the strategic impact of a region’s investment in the adoption of a cleaner technology, as embodied by a reduction in the emission per output ratio, on the equilibrium outcomes and regions’ welfare. The ratio of emissions to output is endogenous and is a decreasing function of the level of the stock of cleaner technology. Each region can invest in a cleaner technology in addition to its control of emissions. Cleaner technology is assumed to be public knowledge so that both regions benefit from the investment in this technology of an individual region. Pollution damage is modeled as a strictly convex function in the pollution stock. We analyze the feedback equilibrium of the noncooperative game between two regions played over an infinite horizon. The formulation of the transboundary pollution dynamic game does not fit any special structure of analytically tractable games such as linear-state or linear-quadratic differential games. We use numerical methods to characterize the feedback equilibrium of the noncooperative game. The equilibrium trajectories of the stocks of pollution and cleaner technology as well the regions’ welfare are compared under different scenarios.

Suggested Citation

  • Javier Frutos & Víctor Gatón & Paula M. López-Pérez & Guiomar Martín-Herrán, 2022. "Investment in Cleaner Technologies in a Transboundary Pollution Dynamic Game: A Numerical Investigation," Dynamic Games and Applications, Springer, vol. 12(3), pages 813-843, September.
  • Handle: RePEc:spr:dyngam:v:12:y:2022:i:3:d:10.1007_s13235-022-00445-z
    DOI: 10.1007/s13235-022-00445-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13235-022-00445-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13235-022-00445-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jaakkola, Niko & van der Ploeg, Frederick, 2019. "Non-cooperative and cooperative climate policies with anticipated breakthrough technology," Journal of Environmental Economics and Management, Elsevier, vol. 97(C), pages 42-66.
    2. Shuhua Chang & Suresh P. Sethi & Xinyu Wang, 2018. "Optimal Abatement and Emission Permit Trading Policies in a Dynamic Transboundary Pollution Game," Dynamic Games and Applications, Springer, vol. 8(3), pages 542-572, September.
    3. Carolyn Fischer & Cees Withagen & Michael Toman, 2004. "Optimal Investment in Clean Production Capacity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 28(3), pages 325-345, July.
    4. Benchekroun, Hassan & Martín-Herrán, Guiomar, 2016. "The impact of foresight in a transboundary pollution game," European Journal of Operational Research, Elsevier, vol. 251(1), pages 300-309.
    5. Frederick Ploeg & Aart Zeeuw, 1992. "International aspects of pollution control," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 2(2), pages 117-139, March.
    6. Bréchet, Thierry & Hritonenko, Natali & Yatsenko, Yuri, 2016. "Domestic environmental policy and international cooperation for global commons," Resource and Energy Economics, Elsevier, vol. 44(C), pages 183-205.
    7. Alain Haurie & Jacek B Krawczyk & Georges Zaccour, 2012. "Games and Dynamic Games," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8442, February.
    8. Dockner Engelbert J. & Van Long Ngo, 1993. "International Pollution Control: Cooperative versus Noncooperative Strategies," Journal of Environmental Economics and Management, Elsevier, vol. 25(1), pages 13-29, July.
    9. Bertinelli, Luisito & Camacho, Carmen & Zou, Benteng, 2014. "Carbon capture and storage and transboundary pollution: A differential game approach," European Journal of Operational Research, Elsevier, vol. 237(2), pages 721-728.
    10. de Frutos, Javier & Martín-Herrán, Guiomar, 2019. "Spatial vs. non-spatial transboundary pollution control in a class of cooperative and non-cooperative dynamic games," European Journal of Operational Research, Elsevier, vol. 276(1), pages 379-394.
    11. Fouad El Ouardighi & Konstantin Kogan & Giorgio Gnecco & Marcello Sanguineti, 2020. "Transboundary pollution control and environmental absorption efficiency management," Annals of Operations Research, Springer, vol. 287(2), pages 653-681, April.
    12. Javier Frutos & Guiomar Martín-Herrán, 2018. "Selection of a Markov Perfect Nash Equilibrium in a Class of Differential Games," Dynamic Games and Applications, Springer, vol. 8(3), pages 620-636, September.
    13. Baker, Erin & Clarke, Leon & Shittu, Ekundayo, 2008. "Technical change and the marginal cost of abatement," Energy Economics, Elsevier, vol. 30(6), pages 2799-2816, November.
    14. de Frutos, Javier & Martín-Herrán, Guiomar, 2019. "Spatial effects and strategic behavior in a multiregional transboundary pollution dynamic game," Journal of Environmental Economics and Management, Elsevier, vol. 97(C), pages 182-207.
    15. Van Long, Ngo, 2012. "Applications of Dynamic Games to Global and Transboundary Environmental Issues: A Review of the Literature," Strategic Behavior and the Environment, now publishers, vol. 2(1), pages 1-59, January.
    16. Jorgensen, Steffen & Zaccour, Georges, 2001. "Time consistent side payments in a dynamic game of downstream pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 25(12), pages 1973-1987, December.
    17. Javier Frutos & Guiomar Martín-Herrán, 2015. "Does Flexibility Facilitate Sustainability of Cooperation Over Time? A Case Study from Environmental Economics," Journal of Optimization Theory and Applications, Springer, vol. 165(2), pages 657-677, May.
    18. Dockner,Engelbert J. & Jorgensen,Steffen & Long,Ngo Van & Sorger,Gerhard, 2000. "Differential Games in Economics and Management Science," Cambridge Books, Cambridge University Press, number 9780521637329.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Xu & Ming Luo, 2022. "Optimal Environmental Policy in a Dynamic Transboundary Pollution Game: Emission Standards, Taxes, and Permit Trading," Sustainability, MDPI, vol. 14(15), pages 1-25, July.
    2. Wenzhuo Sun & Zheng Liu, 2023. "Third-Party Governance of Groundwater Ammonia Nitrogen Pollution: An Evolutionary Game Analysis Considering Reward and Punishment Distribution Mechanism and Pollution Rights Trading Policy," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    3. Florian Wagener, 2022. "Dynamic Games in Environmental Economics and Management," Dynamic Games and Applications, Springer, vol. 12(3), pages 747-750, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Xu & Ming Luo, 2022. "Optimal Environmental Policy in a Dynamic Transboundary Pollution Game: Emission Standards, Taxes, and Permit Trading," Sustainability, MDPI, vol. 14(15), pages 1-25, July.
    2. Boucekkine, Raouf & Ruan, Weihua & Zou, Benteng, 2023. "The irreversible pollution game," Journal of Environmental Economics and Management, Elsevier, vol. 120(C).
    3. Hao Xu & Deqing Tan, 2023. "Optimal Abatement Technology Licensing in a Dynamic Transboundary Pollution Game: Fixed Fee Versus Royalty," Computational Economics, Springer;Society for Computational Economics, vol. 61(3), pages 905-935, March.
    4. Benchekroun, Hassan & Ray Chaudhuri, Amrita, 2014. "Transboundary pollution and clean technologies," Resource and Energy Economics, Elsevier, vol. 36(2), pages 601-619.
    5. de Frutos, Javier & Martín-Herrán, Guiomar, 2019. "Spatial vs. non-spatial transboundary pollution control in a class of cooperative and non-cooperative dynamic games," European Journal of Operational Research, Elsevier, vol. 276(1), pages 379-394.
    6. Boucekkine, Raouf & Fabbri, Giorgio & Federico, Salvatore & Gozzi, Fausto, 2021. "From firm to global-level pollution control: The case of transboundary pollution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 331-345.
    7. Javier Frutos & Guiomar Martín-Herrán, 2018. "Selection of a Markov Perfect Nash Equilibrium in a Class of Differential Games," Dynamic Games and Applications, Springer, vol. 8(3), pages 620-636, September.
    8. Boucekkine, Raouf & Fabbri, Giorgio & Federico, Salvatore & Gozzi, Fausto, 2022. "A dynamic theory of spatial externalities," Games and Economic Behavior, Elsevier, vol. 132(C), pages 133-165.
    9. Li, Huiquan & Guo, Genlong, 2019. "A differential game analysis of multipollutant transboundary pollution in river basin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    10. Steffen Jørgensen & Ngo Long & Gerhard Sorger, 2018. "Preface: Special issue of Dynamic Games and Applications in Memory of Professor Engelbert J. Dockner," Dynamic Games and Applications, Springer, vol. 8(3), pages 457-467, September.
    11. Li, Liming & Chen, Weidong, 2021. "The impact of subsidies in a transboundary pollution game with myopic players," Omega, Elsevier, vol. 103(C).
    12. Anastasios Xepapadeas, 2022. "On the optimal management of environmental stock externalities," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 119(24), pages 2202679119-, June.
    13. N. Baris Vardar & Georges Zaccour, 2020. "Exploitation of a Productive Asset in the Presence of Strategic Behavior and Pollution Externalities," Mathematics, MDPI, vol. 8(10), pages 1-28, October.
    14. Shuhua Chang & Suresh P. Sethi & Xinyu Wang, 2018. "Optimal Abatement and Emission Permit Trading Policies in a Dynamic Transboundary Pollution Game," Dynamic Games and Applications, Springer, vol. 8(3), pages 542-572, September.
    15. Fouad El Ouardighi & Konstantin Kogan & Giorgio Gnecco & Marcello Sanguineti, 2020. "Transboundary pollution control and environmental absorption efficiency management," Annals of Operations Research, Springer, vol. 287(2), pages 653-681, April.
    16. Li, Shoude & Fu, Tong, 2022. "Abatement technology innovation, worker productivity and firm profitability: A dynamic analysis," Energy Economics, Elsevier, vol. 115(C).
    17. Wang, Xinyu & Zhang, Shuhua & Hao, Wenwei, 2022. "Myopic vs. foresighted behaviors in a transboundary pollution game with abatement policy and emission permits trading," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    18. Benchekroun, H. & Ray Chaudhuri, A., 2010. "'The Voracity Effect' and Climate Change : The Impact of Clean Technologies," Discussion Paper 2010-97, Tilburg University, Center for Economic Research.
    19. Niko Jaakkola & Florian Wagener, 2020. "All symmetric equilibria in differential games with public goods," Tinbergen Institute Discussion Papers 20-020/II, Tinbergen Institute.
    20. Michèle Breton & Lucia Sbragia & Georges Zaccour, 2010. "A Dynamic Model for International Environmental Agreements," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 25-48, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:12:y:2022:i:3:d:10.1007_s13235-022-00445-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.