IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i16p9876-d885088.html
   My bibliography  Save this article

The Agricultural Green Production following the Technological Progress: Evidence from China

Author

Listed:
  • Shuxing Xiao

    (School of Public Administration and Law, Hunan Agricultural University, Changsha 410128, China
    School of Teacher Education, Shaoguan University, Shaoguan 512005, China)

  • Zuxin He

    (School of Economics, Guangdong University of Finance & Economics, Guangzhou 510320, China)

  • Weikun Zhang

    (School of Social and Public Administration, Lingnan Normal University, Zhanjiang 524088, China)

  • Xiaoming Qin

    (Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China)

Abstract

This study performs the spatial Durbin model (SDM) and threshold model to analyze the efficiency of agricultural green production following technological progress from 1998 through 2019. The SDM supports a nonlinear contribution of technological progress spillover to agricultural green total factor productivity (GTFP), exacerbated by upgrading agricultural structure. Moreover, the threshold model confirms that technological progress has a single threshold effect on agricultural GTFP with the rationalization of the agrarian system as a threshold variable; meanwhile, the contribution of technological progress to agricultural GTFP is less than that of agricultural total factor productivity. Out of the expanded application of dissipative structure theory in agricultural GTFP systems innovatively, this study reveals the urgency to strengthen the innovation of independent technology, lower the threshold for introducing technology, and optimize the agrarian structure in the long-term sustainable agriculture for the economies that are undergoing a similar development stage as China.

Suggested Citation

  • Shuxing Xiao & Zuxin He & Weikun Zhang & Xiaoming Qin, 2022. "The Agricultural Green Production following the Technological Progress: Evidence from China," IJERPH, MDPI, vol. 19(16), pages 1-16, August.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:9876-:d:885088
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/16/9876/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/16/9876/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. William Brock & M. Taylor, 2010. "The Green Solow model," Journal of Economic Growth, Springer, vol. 15(2), pages 127-153, June.
    2. Yuan Zhao & Tian Zhang & Ting Wu & Shujing Xu & Shuwang Yang, 2021. "Effects of Technological Progress from Different Sources on Haze Pollution in China," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    3. Weber, William L. & Domazlicky, Bruce R., 1999. "Total factor productivity growth in manufacturing: a regional approach using linear programming," Regional Science and Urban Economics, Elsevier, vol. 29(1), pages 105-122, January.
    4. Hansen, Bruce E., 1999. "Threshold effects in non-dynamic panels: Estimation, testing, and inference," Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
    5. Huang, Junbing & Cai, Xiaochen & Huang, Shuo & Tian, Sen & Lei, Hongyan, 2019. "Technological factors and total factor productivity in China: Evidence based on a panel threshold model," China Economic Review, Elsevier, vol. 54(C), pages 271-285.
    6. Pan, Xiuzhen & Wei, Zixiang & Han, Botang & Shahbaz, Muhammad, 2021. "The heterogeneous impacts of interregional green technology spillover on energy intensity in China," Energy Economics, Elsevier, vol. 96(C).
    7. Zhang, Wei & Li, Jing & Li, Guoxiang & Guo, Shucen, 2020. "Emission reduction effect and carbon market efficiency of carbon emissions trading policy in China," Energy, Elsevier, vol. 196(C).
    8. Peneder, Michael, 2003. "Industrial structure and aggregate growth," Structural Change and Economic Dynamics, Elsevier, vol. 14(4), pages 427-448, December.
    9. Späti, Karin & Huber, Robert & Finger, Robert, 2021. "Benefits of Increasing Information Accuracy in Variable Rate Technologies," Ecological Economics, Elsevier, vol. 185(C).
    10. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    11. Li, Ye & Chen, Yiyan, 2021. "Development of an SBM-ML model for the measurement of green total factor productivity: The case of pearl river delta urban agglomeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    12. Zhai, Xueqi & An, Yunfei, 2021. "The relationship between technological innovation and green transformation efficiency in China: An empirical analysis using spatial panel data," Technology in Society, Elsevier, vol. 64(C).
    13. Hadi A. AL-agele & Lloyd Nackley & Chad W. Higgins, 2021. "A Pathway for Sustainable Agriculture," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shah, Wasi Ul Hassan & Hao, Gang & Yasmeen, Rizwana & Yan, Hong & Shen, Jintao & Lu, Yuting, 2023. "Role of China's agricultural water policy reforms and production technology heterogeneity on agriculture water usage efficiency and total factor productivity change," Agricultural Water Management, Elsevier, vol. 287(C).
    2. Yujian Jin & Lihong Yu & Yan Wang, 2022. "Green Total Factor Productivity and Its Saving Effect on the Green Factor in China’s Strategic Minerals Industry from 1998–2017," IJERPH, MDPI, vol. 19(22), pages 1-20, November.
    3. Yang Shen & Xiaoyang Guo & Xiuwu Zhang, 2023. "Digital Financial Inclusion, Land Transfer, and Agricultural Green Total Factor Productivity," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    4. Weikun Zhang & Peng Gao & Zhe Chen & Hailan Qiu, 2023. "Preventing Agricultural Non-Point Source Pollution in China: The Effect of Environmental Regulation with Digitization," IJERPH, MDPI, vol. 20(5), pages 1-17, March.
    5. Xuelan Li & Rui Guan, 2023. "How Does Agricultural Mechanization Service Affect Agricultural Green Transformation in China?," IJERPH, MDPI, vol. 20(2), pages 1-23, January.
    6. Guang Yang & Hua Yan & Quanfeng Li, 2023. "Coordination Analysis of Sustainable Agricultural Development in Northeast China from the Perspective of Spatiotemporal Relationships," Sustainability, MDPI, vol. 15(23), pages 1-25, November.
    7. Jiale Yan & Zhengyuan Tang & Yinuo Guan & Mingjian Xie & Yongjian Huang, 2023. "Analysis of Measurement, Regional Differences, Convergence and Dynamic Evolutionary Trends of the Green Production Level in Chinese Agriculture," Agriculture, MDPI, vol. 13(10), pages 1-18, October.
    8. Muziyun Liu & Hui Liu, 2023. "Influence of Climate Change on Carbon Emissions during Grain Production and Its Mechanism," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
    9. Yuhua Ma & Tong Lin & Qifang Xiao, 2022. "The Relationship between Environmental Regulation, Green-Technology Innovation and Green Total-Factor Productivity—Evidence from 279 Cities in China," IJERPH, MDPI, vol. 19(23), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuxin Fang & Hongjun Cao & Jihui Sun, 2022. "Impact of Artificial Intelligence on Regional Green Development under China’s Environmental Decentralization System—Based on Spatial Durbin Model and Threshold Effect," IJERPH, MDPI, vol. 19(22), pages 1-27, November.
    2. Ostadzad, Ali Hossein, 2022. "Innovation and carbon emissions: Fixed-effects panel threshold model estimation for renewable energy," Renewable Energy, Elsevier, vol. 198(C), pages 602-617.
    3. Zhou, Xiaoxiao & Pan, Zixuan & Shahbaz, Muhammad & Song, Malin, 2020. "Directed technological progress driven by diversified industrial structural change," Structural Change and Economic Dynamics, Elsevier, vol. 54(C), pages 112-129.
    4. Ye, Jiangfeng & Wan, Qunchao & Li, Ruida & Yao, Zhu & Huang, Dujuan, 2022. "How do R&D agglomeration and economic policy uncertainty affect the innovative performance of Chinese high-tech industry?," Technology in Society, Elsevier, vol. 69(C).
    5. Yuanyuan Zhu & Rui Zhang & Jiaxing Cui, 2022. "Spatial Differentiation and Influencing Factors in the Ecological Well-Being Performance of Urban Agglomerations in the Middle Reaches of the Yangtze River: A Hierarchical Perspective," IJERPH, MDPI, vol. 19(19), pages 1-22, October.
    6. Susheng Wang & Gang Chen & Xue Han, 2021. "An Analysis of the Impact of the Emissions Trading System on the Green Total Factor Productivity Based on the Spatial Difference-in-Differences Approach: The Case of China," IJERPH, MDPI, vol. 18(17), pages 1-18, August.
    7. Yuanyuan Wu & Zhanhua Jia & Tingting Yu, 2022. "Tourism and Green Development: Analysis of Linear and Non-Linear Effects," IJERPH, MDPI, vol. 19(23), pages 1-22, November.
    8. Lingming Chen & Congjia Huo, 2021. "Impact of Green Innovation Efficiency on Carbon Emission Reduction in the Guangdong-Hong Kong-Macao GBA," Sustainability, MDPI, vol. 13(23), pages 1-22, December.
    9. Zheng, Hongyun & Vatsa, Puneet & Ma, Wanglin & Zhou, Xiaoshou, 2023. "Working hours and job satisfaction in China: A threshold analysis," China Economic Review, Elsevier, vol. 77(C).
    10. Xiaojun Lyu & Haiqian Ke, 2022. "Dynamic Threshold Effect of Directed Technical Change Suppress on Urban Carbon Footprint in China," IJERPH, MDPI, vol. 19(9), pages 1-15, April.
    11. Ruomeng Zhou & Yunsheng Zhang, 2023. "Measurement of Urban Green Total Factor Productivity and Analysis of Its Temporal and Spatial Evolution in China," Sustainability, MDPI, vol. 15(12), pages 1-32, June.
    12. Wu, Haitao & Hao, Yu & Weng, Jia-Hsi, 2019. "How does energy consumption affect China's urbanization? New evidence from dynamic threshold panel models," Energy Policy, Elsevier, vol. 127(C), pages 24-38.
    13. Wang Jian & Wenjuan Huang & Woraphon Yamaka & Jianxu Liu, 2023. "Internet Development and Green Total Factor Productivity: New Evidence of Mediation and Threshold Effects," Sustainability, MDPI, vol. 15(16), pages 1-23, August.
    14. Qinghua Huang & Min Liu, 2022. "Trade openness and green total factor productivity: testing the role of environment regulation based on dynamic panel threshold model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9304-9329, July.
    15. Weijiang Liu & Mingze Du, 2021. "Is Technological Progress Selective for Multiple Pollutant Emissions?," IJERPH, MDPI, vol. 18(17), pages 1-17, September.
    16. Siying Hu & Shangkun Lu & Huiqiu Zhou, 2023. "Public Investment, Environmental Regulation, and the Sustainable Development of Agriculture in China Based on the Decomposition of Green Total Factor Productivity," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    17. Shu-Chen Chang & Meng-Hua Li, 2019. "Impacts of Foreign Direct Investment and Economic Development on Carbon Dioxide Emissions Across Different Population Regimes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(2), pages 583-607, February.
    18. Guo, Ran & Yuan, Yijun, 2020. "Different types of environmental regulations and heterogeneous influence on energy efficiency in the industrial sector: Evidence from Chinese provincial data," Energy Policy, Elsevier, vol. 145(C).
    19. Xiaohu Li & Xigang Zhu & Jianshu Li & Chao Gu, 2021. "Influence of Different Industrial Agglomeration Modes on Eco-Efficiency in China," IJERPH, MDPI, vol. 18(24), pages 1-23, December.
    20. Meng Yan & Zhen An, 2017. "Foreign Direct Investment and Environmental Pollution: New Evidence from China," Econometrics Letters, Bilimsel Mektuplar Organizasyonu (Scientific letters), vol. 4(1), pages 1-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:9876-:d:885088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.