IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v198y2022icp602-617.html
   My bibliography  Save this article

Innovation and carbon emissions: Fixed-effects panel threshold model estimation for renewable energy

Author

Listed:
  • Ostadzad, Ali Hossein

Abstract

The sustainability of economic growth has recently become a major objective for the global economy. Innovation is a newly emerged key factor for an efficient energy market and sustainable development. It can reduce pollution by increasing production efficiency (the first effect of CO2e reduction) and direct involvement in renewable energy development (the second effect of CO2e reduction) by replacing fossil fuel instruments with their counterparts that rely on renewable energy. The main question of this research is: Will the impact of innovation on per capita CO2e be the same on a threshold with different levels of renewable energy consumption? This paper explores the impact of innovation on CO2 emissions in a panel of 29 selected EU countries from 2000 to 2019 using the fixed-effect panel threshold model. The results indicated that innovation had a significantly negative effect on per capita CO2e. In the early levels of the use of renewable energy, innovations have been directed more towards clean energy (the second effect on CO2e). Innovations were directed more towards clean energy in using renewable energy at early levels. It can be concluded that this policy has led to more innovation in clean energy production and more use of renewable energy, thus reducing CO2e considerably (the second effect).

Suggested Citation

  • Ostadzad, Ali Hossein, 2022. "Innovation and carbon emissions: Fixed-effects panel threshold model estimation for renewable energy," Renewable Energy, Elsevier, vol. 198(C), pages 602-617.
  • Handle: RePEc:eee:renene:v:198:y:2022:i:c:p:602-617
    DOI: 10.1016/j.renene.2022.08.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122012393
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.08.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Boqiang & Chen, Yufang, 2019. "Does electricity price matter for innovation in renewable energy technologies in China?," Energy Economics, Elsevier, vol. 78(C), pages 259-266.
    2. Goodness C. Aye & Prosper Ebruvwiyo Edoja, 2017. "Effect of economic growth on CO2 emission in developing countries: Evidence from a dynamic panel threshold model," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1379239-137, January.
    3. Yanwen Sheng & Yi Miao & Jinping Song & Hongyan Shen, 2019. "The Moderating Effect of Innovation on the Relationship between Urbanization and CO 2 Emissions: Evidence from Three Major Urban Agglomerations in China," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    4. Qunyong Wang, 2015. "Fixed-effect panel threshold model using Stata," Stata Journal, StataCorp LP, vol. 15(1), pages 121-134, March.
    5. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    6. Michael L. Polemis & Thanasis Stengos, 2019. "Does competition prevent industrial pollution? Evidence from a panel threshold model," Business Strategy and the Environment, Wiley Blackwell, vol. 28(1), pages 98-110, January.
    7. Bhattacharya, Mita & Awaworyi Churchill, Sefa & Paramati, Sudharshan Reddy, 2017. "The dynamic impact of renewable energy and institutions on economic output and CO2 emissions across regions," Renewable Energy, Elsevier, vol. 111(C), pages 157-167.
    8. Bélaïd, Fateh & Youssef, Meriem, 2017. "Environmental degradation, renewable and non-renewable electricity consumption, and economic growth: Assessing the evidence from Algeria," Energy Policy, Elsevier, vol. 102(C), pages 277-287.
    9. Tomiwa Sunday Adebayo & Dervis Kirikkaleli, 2021. "Impact of renewable energy consumption, globalization, and technological innovation on environmental degradation in Japan: application of wavelet tools," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16057-16082, November.
    10. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    11. Chen, Wenhui & Lei, Yalin, 2018. "The impacts of renewable energy and technological innovation on environment-energy-growth nexus: New evidence from a panel quantile regression," Renewable Energy, Elsevier, vol. 123(C), pages 1-14.
    12. Tiba, Sofien & Belaid, Fateh, 2020. "The pollution concern in the era of globalization: Do the contribution of foreign direct investment and trade openness matter?," Energy Economics, Elsevier, vol. 92(C).
    13. Hongzhong Fan & Md Ismail Hossain, 2018. "Technological Innovation, Trade Openness, CO2 Emission and Economic Growth: Comparative Analysis between China and India," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 240-257.
    14. Alper, Aslan & Oguz, Ocal, 2016. "The role of renewable energy consumption in economic growth: Evidence from asymmetric causality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 953-959.
    15. Wang, Qiang & Wu, Shi-dai & Zeng, Yue-e & Wu, Bo-wei, 2016. "Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1563-1579.
    16. Ardito, Lorenzo & D'Adda, Diego & Messeni Petruzzelli, Antonio, 2018. "Mapping innovation dynamics in the Internet of Things domain: Evidence from patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 317-330.
    17. Pesaran, M. Hashem & Vanessa Smith, L. & Yamagata, Takashi, 2013. "Panel unit root tests in the presence of a multifactor error structure," Journal of Econometrics, Elsevier, vol. 175(2), pages 94-115.
    18. Choi, In, 2001. "Unit root tests for panel data," Journal of International Money and Finance, Elsevier, vol. 20(2), pages 249-272, April.
    19. Tomasz Jałowiec & Henryk Wojtaszek & Ireneusz Miciuła, 2021. "Green Energy Management through the Implementation of RES in the EU. Analysis of the Opinions of Poland and Germany," Energies, MDPI, vol. 14(23), pages 1-33, December.
    20. Zheming Yan & Lan Yi & Kerui Du & Zhiming Yang, 2017. "Impacts of Low-Carbon Innovation and Its Heterogeneous Components on CO 2 Emissions," Sustainability, MDPI, vol. 9(4), pages 1-14, April.
    21. Pesaran M.H. & Schuermann T. & Weiner S.M., 2004. "Modeling Regional Interdependencies Using a Global Error-Correcting Macroeconometric Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 129-162, April.
    22. Manzoor Ahmad & Zeeshan Khan & Zia Ur Rahman & Shoukat Iqbal Khattak & Zia Ullah Khan, 2021. "Can innovation shocks determine CO2 emissions (CO2e) in the OECD economies? A new perspective," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 30(1), pages 89-109, January.
    23. Alexander Chudik & M. Hashem Pesaran, 2013. "Large Panel Data Models with Cross-Sectional Dependence: A Survey," CESifo Working Paper Series 4371, CESifo.
    24. Paramati, Sudharshan Reddy & Mo, Di & Gupta, Rakesh, 2017. "The effects of stock market growth and renewable energy use on CO2 emissions: Evidence from G20 countries," Energy Economics, Elsevier, vol. 66(C), pages 360-371.
    25. Rafindadi, Abdulkadir Abdulrashid & Ozturk, Ilhan, 2017. "Impacts of renewable energy consumption on the German economic growth: Evidence from combined cointegration test," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1130-1141.
    26. Hansen, Bruce E., 1999. "Threshold effects in non-dynamic panels: Estimation, testing, and inference," Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
    27. Zoundi, Zakaria, 2017. "CO2 emissions, renewable energy and the Environmental Kuznets Curve, a panel cointegration approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1067-1075.
    28. Huang, Junbing & Cai, Xiaochen & Huang, Shuo & Tian, Sen & Lei, Hongyan, 2019. "Technological factors and total factor productivity in China: Evidence based on a panel threshold model," China Economic Review, Elsevier, vol. 54(C), pages 271-285.
    29. Inglesi-Lotz, Roula & Dogan, Eyup, 2018. "The role of renewable versus non-renewable energy to the level of CO2 emissions a panel analysis of sub- Saharan Africa’s Βig 10 electricity generators," Renewable Energy, Elsevier, vol. 123(C), pages 36-43.
    30. Constantin, Paulo Dutra & Martin, Diogenes Leiva & Rivera Y Rivera, Edward Bernard Bastiaan De, 2009. "Cobb-Douglas, Translog Stochastic Production Function and Data Envelopment Analysis in Total Factor Productivity in Brazilian Agribusiness," Journal of Operations and Supply Chain Management (JOSCM), Fundação Getulio Vargas, Escola de Administração de Empresas de São Paulo (FGV EAESP), vol. 2(2), December.
    31. Goel, Rajeev K & Ram, Rati, 1994. "Research and Development Expenditures and Economic Growth: A Cross-Country Study," Economic Development and Cultural Change, University of Chicago Press, vol. 42(2), pages 403-411, January.
    32. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    33. Inglesi-Lotz, Roula, 2016. "The impact of renewable energy consumption to economic growth: A panel data application," Energy Economics, Elsevier, vol. 53(C), pages 58-63.
    34. Gracceva, Francesco & Zeniewski, Peter, 2014. "A systemic approach to assessing energy security in a low-carbon EU energy system," Applied Energy, Elsevier, vol. 123(C), pages 335-348.
    35. Hilbe, Joseph M., 2007. "STATISTICA 7: An Overview," The American Statistician, American Statistical Association, vol. 61, pages 91-94, February.
    36. Jaforullah, Mohammad & King, Alan, 2017. "The econometric consequences of an energy consumption variable in a model of CO2 emissions," Energy Economics, Elsevier, vol. 63(C), pages 84-91.
    37. Yunhui Zhao & Taiwen Feng & Hongbo Shi, 2018. "External involvement and green product innovation: The moderating role of environmental uncertainty," Business Strategy and the Environment, Wiley Blackwell, vol. 27(8), pages 1167-1180, December.
    38. Moon, Hyungsik Roger & Perron, Benoit & Phillips, Peter C.B., 2007. "Incidental trends and the power of panel unit root tests," Journal of Econometrics, Elsevier, vol. 141(2), pages 416-459, December.
    39. Qin Fei & Rajah Rasiah & Leow Jia Shen, 2014. "The Clean Energy-Growth Nexus with CO2 Emissions and Technological Innovation in Norway and New Zealand," Energy & Environment, , vol. 25(8), pages 1323-1344, December.
    40. Lin, Boqiang & Li, Zheng, 2020. "Is more use of electricity leading to less carbon emission growth? An analysis with a panel threshold model," Energy Policy, Elsevier, vol. 137(C).
    41. Roman G. Smirnov & Kunpeng Wang, 2019. "The Cobb-Douglas production function revisited," Papers 1910.06739, arXiv.org, revised Oct 2019.
    42. Viju Raghupathi & Wullianallur Raghupathi, 2017. "Innovation at country-level: association between economic development and patents," Journal of Innovation and Entrepreneurship, Springer, vol. 6(1), pages 1-20, December.
    43. Danish I. Godil & Zhang Yu & Arshian Sharif & Rimsha Usman & Syed Abdul Rehman Khan, 2021. "Investigate the role of technology innovation and renewable energy in reducing transport sector CO2 emission in China: A path toward sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(4), pages 694-707, July.
    44. Lin, Yingqian & Tu, Yundong, 2020. "Robust inference for spurious regressions and cointegrations involving processes moderately deviated from a unit root," Journal of Econometrics, Elsevier, vol. 219(1), pages 52-65.
    45. Abdul Rehman & Hengyun Ma & Ilhan Ozturk & Muntasir Murshed & Vishal Dagar, 2021. "The dynamic impacts of CO2 emissions from different sources on Pakistan’s economic progress: a roadmap to sustainable development," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17857-17880, December.
    46. Fethi, Sami & Rahuma, Abdulhamid, 2020. "The impact of eco-innovation on CO2 emission reductions: Evidence from selected petroleum companies," Structural Change and Economic Dynamics, Elsevier, vol. 53(C), pages 108-115.
    47. Wang, Xue-Chao & Klemeš, Jiří Jaromír & Dong, Xiaobin & Fan, Weiguo & Xu, Zihan & Wang, Yutao & Varbanov, Petar Sabev, 2019. "Air pollution terrain nexus: A review considering energy generation and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 71-85.
    48. Lin, Boqiang & Moubarak, Mohamed, 2014. "Renewable energy consumption – Economic growth nexus for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 111-117.
    49. Luo, Yusen & Lu, Zhengnan & Long, Xingle, 2020. "Heterogeneous effects of endogenous and foreign innovation on CO2 emissions stochastic convergence across China," Energy Economics, Elsevier, vol. 91(C).
    50. Shahbaz, Muhammad & Raghutla, Chandrashekar & Song, Malin & Zameer, Hashim & Jiao, Zhilun, 2020. "Public-private partnerships investment in energy as new determinant of CO2 emissions: The role of technological innovations in China," Energy Economics, Elsevier, vol. 86(C).
    51. Zhang, Qichen & Dong, Weihong & Wen, Chuanlei & Li, Tong, 2020. "Study on factors affecting corn yield based on the Cobb-Douglas production function," Agricultural Water Management, Elsevier, vol. 228(C).
    52. Keun Lee & Jongho Lee, 2020. "National innovation systems, economic complexity, and economic growth: country panel analysis using the US patent data," Journal of Evolutionary Economics, Springer, vol. 30(4), pages 897-928, September.
    53. Rafael E. De Hoyos & Vasilis Sarafidis, 2006. "Testing for cross-sectional dependence in panel-data models," Stata Journal, StataCorp LP, vol. 6(4), pages 482-496, December.
    54. Nagaoka, Sadao & Motohashi, Kazuyuki & Goto, Akira, 2010. "Patent Statistics as an Innovation Indicator," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 1083-1127, Elsevier.
    55. Chi-Wei Su & Yannong Xie & Sadaf Shahab & Ch. Muhammad Nadeem Faisal & Muhammad Hafeez & Ghulam Muhammad Qamri, 2021. "Towards Achieving Sustainable Development: Role of Technology Innovation, Technology Adoption and CO 2 Emission for BRICS," IJERPH, MDPI, vol. 18(1), pages 1-13, January.
    56. Bhattacharya, Mita & Paramati, Sudharshan Reddy & Ozturk, Ilhan & Bhattacharya, Sankar, 2016. "The effect of renewable energy consumption on economic growth: Evidence from top 38 countries," Applied Energy, Elsevier, vol. 162(C), pages 733-741.
    57. Bai Liu & Yutian Liu & Ailian Zhang, 2021. "Heterogeneous impact of CO2 emissions on renewable energy technology innovation between oil importers and exporters," Energy & Environment, , vol. 32(2), pages 281-294, March.
    58. Bai, Jushan & Ng, Serena, 2010. "Panel Unit Root Tests With Cross-Section Dependence: A Further Investigation," Econometric Theory, Cambridge University Press, vol. 26(4), pages 1088-1114, August.
    59. Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, April.
    60. Jiang-Bo Geng & Qiang Ji, 2016. "Technological innovation and renewable energy development: evidence based on patent counts," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 15(3), pages 217-234.
    61. Du, Kerui & Li, Pengzhen & Yan, Zheming, 2019. "Do green technology innovations contribute to carbon dioxide emission reduction? Empirical evidence from patent data," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 297-303.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siqing You & Han Zhao & Hongli Zhou & Chaoyu Zhang & Zican Li, 2023. "The Impact of Ecological Governance on Industrial Structure Upgrading under the Dual Carbon Target," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    2. Siqing You & Chaoyu Zhang & Han Zhao & Hongli Zhou & Zican Li & Jiayi Xu & Yan Meng, 2023. "Trend Analysis of the Impact of Ecological Governance on Industrial Structural Upgrading under the Dual Carbon Target," Sustainability, MDPI, vol. 15(15), pages 1-15, July.
    3. Mirza, Nawazish & Umar, Muhammad & Afzal, Ayesha & Firdousi, Saba Fazal, 2023. "The role of fintech in promoting green finance, and profitability: Evidence from the banking sector in the euro zone," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 33-40.
    4. Haider Mahmood & Maham Furqan & Najia Saqib & Anass Hamadelneel Adow & Muzaffar Abbas, 2023. "Innovations and the CO 2 Emissions Nexus in the MENA Region: A Spatial Analysis," Sustainability, MDPI, vol. 15(13), pages 1-20, July.
    5. Katarzyna Łukasiewicz & Piotr Pietrzak & Jakub Kraciuk & Elżbieta Kacperska & Małgorzata Cieciora, 2022. "Sustainable Energy Development—A Systematic Literature Review," Energies, MDPI, vol. 15(21), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2020. "Renewable energy consumption and economic growth nexus: Evidence from a threshold model," Energy Policy, Elsevier, vol. 139(C).
    2. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    3. Dong, Kangyin & Sun, Renjin & Hochman, Gal, 2017. "Do natural gas and renewable energy consumption lead to less CO2 emission? Empirical evidence from a panel of BRICS countries," Energy, Elsevier, vol. 141(C), pages 1466-1478.
    4. Shahbaz, Muhammad & Raghutla, Chandrashekar & Chittedi, Krishna Reddy & Jiao, Zhilun & Vo, Xuan Vinh, 2020. "The effect of renewable energy consumption on economic growth: Evidence from the renewable energy country attractive index," Energy, Elsevier, vol. 207(C).
    5. Francisco García-Lillo & Eduardo Sánchez-García & Bartolomé Marco-Lajara & Pedro Seva-Larrosa, 2023. "Renewable Energies and Sustainable Development: A Bibliometric Overview," Energies, MDPI, vol. 16(3), pages 1-22, January.
    6. Mouna Ben Abdeljelil & Christophe Rault & Fateh Belaïd, 2023. "Economic growth and pollutant emissions: new panel evidence from the union for the Mediterranean countries," Economic Change and Restructuring, Springer, vol. 56(3), pages 1537-1566, June.
    7. Namahoro, J.P. & Nzabanita, J. & Wu, Q., 2021. "The impact of total and renewable energy consumption on economic growth in lower and middle- and upper-middle-income groups: Evidence from CS-DL and CCEMG analysis," Energy, Elsevier, vol. 237(C).
    8. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2021. "Determinants of renewable energy consumption: Importance of democratic institutions," Renewable Energy, Elsevier, vol. 179(C), pages 75-83.
    9. Ulucak, Recep & Danish, & Ozcan, Burcu, 2020. "Relationship between energy consumption and environmental sustainability in OECD countries: The role of natural resources rents," Resources Policy, Elsevier, vol. 69(C).
    10. Jin, Taeyoung, 2022. "The evolutionary renewable energy and mitigation impact in OECD countries," Renewable Energy, Elsevier, vol. 189(C), pages 570-586.
    11. Chang, Chiu-Lan & Fang, Ming, 2022. "Renewable energy-led growth hypothesis: New insights from BRICS and N-11 economies," Renewable Energy, Elsevier, vol. 188(C), pages 788-800.
    12. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2022. "Renewable energy and CO2 emissions: New evidence with the panel threshold model," Renewable Energy, Elsevier, vol. 194(C), pages 117-128.
    13. Zhao, Jun & Shahbaz, Muhammad & Dong, Xiucheng & Dong, Kangyin, 2021. "How does financial risk affect global CO2 emissions? The role of technological innovation," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    14. Zeeshan Arshad & Margarita Robaina & Anabela Botelho, 2020. "Renewable and Non-renewable Energy, Economic Growth and Natural Resources Impact on Environmental Quality: Empirical Evidence from South and Southeast Asian Countries with CS-ARDL Modeling," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 368-383.
    15. Najia Saqib & Haider Mahmood & Aamir Hussain Siddiqui & Muhammad Asif Shamim, 2022. "The Link between Economic Growth and Sustainable Energy in G7-Countries and E7-Countries: Evidence from a Dynamic Panel Threshold Model," International Journal of Energy Economics and Policy, Econjournals, vol. 12(5), pages 294-302, September.
    16. Dong, Kangyin & Hochman, Gal & Zhang, Yaqing & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions," Energy Economics, Elsevier, vol. 75(C), pages 180-192.
    17. Charfeddine, Lanouar & Kahia, Montassar, 2019. "Impact of renewable energy consumption and financial development on CO2 emissions and economic growth in the MENA region: A panel vector autoregressive (PVAR) analysis," Renewable Energy, Elsevier, vol. 139(C), pages 198-213.
    18. Danish & Recep Ulucak, 2020. "The pathway toward pollution mitigation: Does institutional quality make a difference?," Business Strategy and the Environment, Wiley Blackwell, vol. 29(8), pages 3571-3583, December.
    19. Fateh Belaïd, Sabri Boubaker, Rajwane Kafrouni, 2020. "Carbon emissions, income inequality and environmental degradation: the case of Mediterranean countries," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 17(1), pages 73-102, June.
    20. Destek, Mehmet Akif & Aslan, Alper, 2020. "Disaggregated renewable energy consumption and environmental pollution nexus in G-7 countries," Renewable Energy, Elsevier, vol. 151(C), pages 1298-1306.

    More about this item

    Keywords

    Renewable energy; Fixed-effect panel threshold model; Innovation; CO2 emissions; Regime change;
    All these keywords.

    JEL classification:

    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • P18 - Political Economy and Comparative Economic Systems - - Capitalist Economies - - - Energy; Environment
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:198:y:2022:i:c:p:602-617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.