IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i9p5151-d800699.html
   My bibliography  Save this article

Dynamic Threshold Effect of Directed Technical Change Suppress on Urban Carbon Footprint in China

Author

Listed:
  • Xiaojun Lyu

    (Fanli Business School, Nanyang Institute of Technology, Nanyang 473000, China)

  • Haiqian Ke

    (Fanli Business School, Nanyang Institute of Technology, Nanyang 473000, China
    Institute of Central China Development, Wuhan University, Wuhan 430072, China)

Abstract

Promoting technical change is an important driving force for promoting the sustainable development of urban economy and ecology; however, the technical change is not always neutral and technical change may has a certain direction. This paper uses the DEA-Malmquist index to measure the directed technical change of 280 cities in China from 2009 to 2019, and uses the DMSP/OLS night light data to characterize the urban economic development level. It uses the dynamic threshold regression model to analyze the impact of directed technical change on urban carbon footprint under different economic development levels. The results show that: (1) during the study period, the carbon footprint of Chinese cities has a positive spatial correlation, and the direction of technical change is towards capital-saving overall. (2) The impact of capital-saving technical change on urban carbon footprint presents a negative double-threshold characteristic in China, and the inhibition of capital-saving technical change on the urban carbon footprint becomes stronger with the increasing economic development level. (3) The inhibitory effect of capital-saving technical change on carbon footprint has regional heterogeneity, and the inhibitory effect of capital-saving technical change on carbon footprint is stronger in eastern China than other regions. (4) Industrial structure, energy structure and innovation efficiency are mediating variables of the inhibitory effect of capital-saving technical change on carbon footprint except for population density.

Suggested Citation

  • Xiaojun Lyu & Haiqian Ke, 2022. "Dynamic Threshold Effect of Directed Technical Change Suppress on Urban Carbon Footprint in China," IJERPH, MDPI, vol. 19(9), pages 1-15, April.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:9:p:5151-:d:800699
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/9/5151/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/9/5151/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Townsend Peterson & Miguel A. Ortega-Huerta & Jeremy Bartley & Victor Sánchez-Cordero & Jorge Soberón & Robert H. Buddemeier & David R. B. Stockwell, 2002. "Future projections for Mexican faunas under global climate change scenarios," Nature, Nature, vol. 416(6881), pages 626-629, April.
    2. Di Maria, C. & van der Werf, E.H., 2005. "Carbon Leakage Revisited : Unilateral Climate Policy with Directed Technical Change," Discussion Paper 2005-68, Tilburg University, Center for Economic Research.
    3. Olivier Blanchard & Lawrence F. Katz, 1997. "What We Know and Do Not Know about the Natural Rate of Unemployment," Journal of Economic Perspectives, American Economic Association, vol. 11(1), pages 51-72, Winter.
    4. Daron Acemoglu & Philippe Aghion & Fabrizio Zilibotti, 2006. "Distance to Frontier, Selection, and Economic Growth," Journal of the European Economic Association, MIT Press, vol. 4(1), pages 37-74, March.
    5. Frederick Van der Ploeg & Armon Rezai, 2016. "Stranded Assets, the Social Cost of Carbon, and Directed Technical Change: Macroeconomic Dynamics of Optimal Climate Policy," CESifo Working Paper Series 5787, CESifo.
    6. Zhang, Tao & Ma, Ying & Li, Angfei, 2021. "Scenario analysis and assessment of China’s nuclear power policy based on the Paris Agreement: A dynamic CGE model," Energy, Elsevier, vol. 228(C).
    7. Liquan Xu & Yong Geng & Dong Wu & Chenyi Zhang & Shijiang Xiao, 2021. "Carbon Footprint of Residents’ Housing Consumption and Its Driving Forces in China," Energies, MDPI, vol. 14(13), pages 1-16, June.
    8. Fare, Rolf, et al, 1997. " Biased Technical Change and the Malmquist Productivity Index," Scandinavian Journal of Economics, Wiley Blackwell, vol. 99(1), pages 119-127, March.
    9. Poterba, James M, 1998. "Demographic Change, Intergenerational Linkages, and Public Education," American Economic Review, American Economic Association, vol. 88(2), pages 315-320, May.
    10. Rolf Färe & Emili Grifell‐Tatjé & Shawna Grosskopf & C. A. Knox Lovell, 1997. "Biased Technical Change and the Malmquist Productivity Index," Scandinavian Journal of Economics, Wiley Blackwell, vol. 99(1), pages 119-127, March.
    11. Huang, Yuan & Yu, Qiang & Wang, Ruirui, 2021. "Driving factors and decoupling effect of carbon footprint pressure in China: Based on net primary production," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    12. Rick Van der Ploeg & Armon Rezai, 2016. "Stranded assets, the social cost of carbon, and directed technical change:," OxCarre Working Papers 176, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    13. Chen, Lei & Li, Ke & Chen, Shuying & Wang, Xiaofei & Tang, Liwei, 2021. "Industrial activity, energy structure, and environmental pollution in China," Energy Economics, Elsevier, vol. 104(C).
    14. André Grimaud & Luc Rouge, 2008. "Environment, Directed Technical Change and Economic Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 41(4), pages 439-463, December.
    15. Weber, William L. & Domazlicky, Bruce R., 1999. "Total factor productivity growth in manufacturing: a regional approach using linear programming," Regional Science and Urban Economics, Elsevier, vol. 29(1), pages 105-122, January.
    16. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    17. Hansen, Bruce E., 1999. "Threshold effects in non-dynamic panels: Estimation, testing, and inference," Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
    18. Tobias Kronenberg, 2010. "Energy conservation, unemployment and the direction of technical change," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 9(1), pages 1-17, April.
    19. Corrado Maria & Edwin Werf, 2008. "Carbon leakage revisited: unilateral climate policy with directed technical change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 39(2), pages 55-74, February.
    20. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    21. Daniel Danxia Xie, 2011. "A Generalized Fact and Model of Long-Run Economic Growth: Kaldor Fact as a Special Case," Working Paper Series WP11-4, Peterson Institute for International Economics.
    22. Daron Acemoglu, 2007. "Equilibrium Bias of Technology," Econometrica, Econometric Society, vol. 75(5), pages 1371-1409, September.
    23. Stephanie Kremer & Alexander Bick & Dieter Nautz, 2013. "Inflation and growth: new evidence from a dynamic panel threshold analysis," Empirical Economics, Springer, vol. 44(2), pages 861-878, April.
    24. Bampatsou, Christina & Halkos, George & Beneki, Christina, 2021. "Energy and material flow management to improve EU productivity," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 83-93.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Fei & Dai, Shangze & Yang, Bo & Ke, Haiqian, 2023. "Urban density, directed technological change, and carbon intensity: An empirical study based on Chinese cities," Technology in Society, Elsevier, vol. 72(C).
    2. Sun, Yanlei & Wang, Siyao & Xing, Zhanlei, 2023. "Do international trade diversification, intellectual capital, and renewable energy transition ensure effective natural resources management in BRICST region," Resources Policy, Elsevier, vol. 81(C).
    3. Li, Tianqun & Chen, Yuhan & Zhou, Liangxiao, 2023. "Impact of trade, technology, and tourism on resources depletion across Belt and Road Node countries," Resources Policy, Elsevier, vol. 83(C).
    4. Ma, Yubo & Fan, Yufeng & Razzaq, Asif, 2023. "Influence of technical efficiency and globalization on sustainable resources management: Evidence from South Asian countries," Resources Policy, Elsevier, vol. 81(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Zhang & Haiqian Ke, 2022. "Spatial Spillover Effects of Directed Technical Change on Urban Carbon Intensity, Based on 283 Cities in China from 2008 to 2019," IJERPH, MDPI, vol. 19(3), pages 1-19, February.
    2. Casey, Gregory, "undated". "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259959, Agricultural and Applied Economics Association.
    3. Yan Wang & Lingling Zuo & Shujing Qian, 2022. "Green-Biased Technical Change and Its Influencing Factors of Agriculture Industry: Empirical Evidence at the Provincial Level in China," IJERPH, MDPI, vol. 19(23), pages 1-24, December.
    4. Slesman, Ly & Baharumshah, Ahmad Zubaidi & Azman-Saini, W.N.W., 2019. "Political institutions and finance-growth nexus in emerging markets and developing countries: A tale of one threshold," The Quarterly Review of Economics and Finance, Elsevier, vol. 72(C), pages 80-100.
    5. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    6. van den Bijgaart, Inge, 2017. "The unilateral implementation of a sustainable growth path with directed technical change," European Economic Review, Elsevier, vol. 91(C), pages 305-327.
    7. Maciej K. Dudek & ówna Handlowa, 2006. "On Artificial Structural Unemployment," Computing in Economics and Finance 2006 171, Society for Computational Economics.
    8. Weijiang Liu & Mingze Du & Yuxin Bai, 2021. "Mechanisms of Environmental Regulation’s Impact on Green Technological Progress—Evidence from China’s Manufacturing Sector," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    9. Hémous, David, 2013. "Environmental Policy and Directed Technical Change in a Global Economy: The Dynamic Impact of Unilateral Environmental Policies," CEPR Discussion Papers 9733, C.E.P.R. Discussion Papers.
    10. Diana Carolina León Torres, 2019. "Un cuento de David y Goliat: Comercio, Tecnología y Crisis Ambiental," Documentos CEDE 17434, Universidad de los Andes, Facultad de Economía, CEDE.
    11. Meeta Keswani Mehra & Sujata Basu, 2013. "Optimal Public Policy in a Schumpeterian Model of Endogenous Growth with Environmental Pollution," Review of Market Integration, India Development Foundation, vol. 5(2), pages 203-248, August.
    12. Sjak Smulders & Michael Toman & Cees Withagen, 2014. "Growth Theory and “Green Growthâ€," OxCarre Working Papers 135, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    13. David Hémous & Morten Olsen, 2021. "Directed Technical Change in Labor and Environmental Economics," Annual Review of Economics, Annual Reviews, vol. 13(1), pages 571-597, August.
    14. Yu Jiang & Na Wang, 2022. "Impact of Biased Technological Change on High-Quality Economic Development of China’s Forestry: Based on Mediating Effect of Industrial Structure Upgrading," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    15. Di Maria, Corrado & Valente, Simone, 2006. "The Direction of Technical Change in Capital-Resource Economies," MPRA Paper 1040, University Library of Munich, Germany.
    16. Johannes Pfeiffer, 2017. "Fossil Resources and Climate Change – The Green Paradox and Resource Market Power Revisited in General Equilibrium," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 77.
    17. Hui Zhang & Haiqian Ke, 2022. "Understanding the Heterogeneous Impact of Innovation Efficiency on Urban Ecological Footprint in China," IJERPH, MDPI, vol. 19(10), pages 1-16, May.
    18. van der Werf, Edwin & Di Maria, Corrado, 2012. "Imperfect Environmental Policy and Polluting Emissions: The Green Paradox and Beyond," International Review of Environmental and Resource Economics, now publishers, vol. 6(2), pages 153-194, March.
    19. Smulders, Sjak & Withagen, Cees, 2012. "Green growth -- lessons from growth theory," Policy Research Working Paper Series 6230, The World Bank.
    20. Wenhan Ren & Jing Ni & Wen Jiao & Yan Li, 2023. "Explore the key factors of sustainable development: A bibliometric and visual analysis of technological progress," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 492-509, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:9:p:5151-:d:800699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.