IDEAS home Printed from https://ideas.repec.org/a/eee/eecrev/v91y2017icp305-327.html
   My bibliography  Save this article

The unilateral implementation of a sustainable growth path with directed technical change

Author

Listed:
  • van den Bijgaart, Inge

Abstract

We determine the conditions under which unilateral policies can implement global sustainable growth in a dynamic two-country directed technical change framework. Domestic climate policies alter the structure of domestic and foreign production and thereby innovation incentives across countries. Implementing sustainable growth requires redirecting global innovation to the nonpolluting sector. If most innovation takes place in the foreign country, policies must redirect foreign innovation by relocating clean production to the foreign country. A calibration exercise suggests that the US or EU alone are too small to implement sustainable growth. A coalition of Annex I countries that ratified the Kyoto protocol can implement sustainable growth, yet required tax rates are very high.

Suggested Citation

  • van den Bijgaart, Inge, 2017. "The unilateral implementation of a sustainable growth path with directed technical change," European Economic Review, Elsevier, vol. 91(C), pages 305-327.
  • Handle: RePEc:eee:eecrev:v:91:y:2017:i:c:p:305-327
    DOI: 10.1016/j.euroecorev.2016.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0014292116301829
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.euroecorev.2016.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Pottier, Antonin & Hourcade, Jean-Charles & Espagne, Etienne, 2014. "Modelling the redirection of technical change: The pitfalls of incorporeal visions of the economy," Energy Economics, Elsevier, vol. 42(C), pages 213-218.
    3. Arik Levinson & M. Scott Taylor, 2008. "Unmasking The Pollution Haven Effect," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 49(1), pages 223-254, February.
    4. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    5. Jean-Marc Burniaux & Joaquim Oliveira Martins, 2016. "Carbon Leakages: A General Equilibrium View," Studies in Economic Theory, in: Graciela Chichilnisky & Armon Rezai (ed.), The Economics of the Global Environment, pages 341-363, Springer.
    6. Di Maria Corrado & Smulders Sjak A., 2005. "Trade Pessimists vs Technology Optimists: Induced Technical Change and Pollution Havens," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 3(2), pages 1-27, January.
    7. Coe, David T. & Helpman, Elhanan, 1995. "International R&D spillovers," European Economic Review, Elsevier, vol. 39(5), pages 859-887, May.
    8. Dechezlepretre, Antoine & Glachant, Matthieu & Hascic, Ivan & Johnstone, Nick & Meniere, Yann, 2009. "Invention and Transfer of Climate Change Mitigation Technologies on a Global Scale: A Study Drawing on Patent Data," Sustainable Development Papers 54361, Fondazione Eni Enrico Mattei (FEEM).
    9. Antonin Pottier & J.C Hourcade & E. Espagne, 2014. "Modelling the redirection of technical change: The pitfalls of incorporeal visions of the economy," Post-Print hal-01523021, HAL.
    10. Antoine Dechezleprêtre & Matthieu Glachant, 2014. "Does Foreign Environmental Policy Influence Domestic Innovation? Evidence from the Wind Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 391-413, July.
    11. Wolfgang Keller, 2002. "Geographic Localization of International Technology Diffusion," American Economic Review, American Economic Association, vol. 92(1), pages 120-142, March.
    12. Jean Charles Hourcade & Antonin Pottier & Etienne Espagne, 2011. "The environment and directed technical change : comment," CIRED Working Papers hal-00866435, HAL.
    13. G. M.P. Swann, 2009. "The Economics of Innovation," Books, Edward Elgar Publishing, number 13211.
    14. Di Maria, C. & van der Werf, E.H., 2005. "Carbon Leakage Revisited : Unilateral Climate Policy with Directed Technical Change," Discussion Paper 2005-68, Tilburg University, Center for Economic Research.
    15. Philippe Aghion & Peter Howitt, 2009. "The Economics of Growth," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012634, December.
    16. Papageorgiou, Chris & Saam, Marianne & Schulte, Patrick, 2013. "Elasticity of substitution between clean and dirty energy inputs: A macroeconomic perspective," ZEW Discussion Papers 13-087, ZEW - Leibniz Centre for European Economic Research.
    17. Wolfgang Keller, 2004. "International Technology Diffusion," Journal of Economic Literature, American Economic Association, vol. 42(3), pages 752-782, September.
    18. repec:hal:journl:hal-01111105 is not listed on IDEAS
    19. Reyer Gerlagh & Onno Kuik, 2007. "Carbon Leakage with International Technology Spillovers," Working Papers 2007.33, Fondazione Eni Enrico Mattei.
    20. Brian R. Copeland & M. Scott Taylor, 2004. "Trade, Growth, and the Environment," Journal of Economic Literature, American Economic Association, vol. 42(1), pages 7-71, March.
    21. World Bank, 2015. "World Development Indicators 2015," World Bank Publications - Books, The World Bank Group, number 21634, December.
    22. repec:dau:papers:123456789/7970 is not listed on IDEAS
    23. Daron Acemoglu & Joshua Linn, 2004. "Market Size in Innovation: Theory and Evidence from the Pharmaceutical Industry," The Quarterly Journal of Economics, Oxford University Press, vol. 119(3), pages 1049-1090.
    24. James R. MARKUSEN, 2021. "International Externalities And Optimal Tax Structures," World Scientific Book Chapters, in: BROADENING TRADE THEORY Incorporating Market Realities into Traditional Models, chapter 16, pages 341-355, World Scientific Publishing Co. Pte. Ltd..
    25. repec:clg:wpaper:2008-02 is not listed on IDEAS
    26. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    27. Babiker, Mustafa H., 2005. "Climate change policy, market structure, and carbon leakage," Journal of International Economics, Elsevier, vol. 65(2), pages 421-445, March.
    28. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," The Quarterly Journal of Economics, Oxford University Press, vol. 114(3), pages 941-975.
    29. Reyer Gerlagh & Snorre Kverndokk & Knut Rosendahl, 2009. "Optimal Timing of Climate Change Policy: Interaction Between Carbon Taxes and Innovation Externalities," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 369-390, July.
    30. Daron Acemoglu, 1998. "Why Do New Technologies Complement Skills? Directed Technical Change and Wage Inequality," The Quarterly Journal of Economics, Oxford University Press, vol. 113(4), pages 1055-1089.
    31. Akos Valentinyi & Berthold Herrendorf, 2008. "Measuring Factor Income Shares at the Sector Level," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 11(4), pages 820-835, October.
    32. Adam Jaffe & Manuel Trajtenberg, 1999. "International Knowledge Flows: Evidence From Patent Citations," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 8(1-2), pages 105-136.
    33. Yann Ménière & Antoine Dechezleprêtre & Matthieu Glachant & Ivan Hascic & N. Johnstone, 2011. "Invention and transfer of climate change mitigation technologies: a study drawing on patent data," Post-Print hal-00869795, HAL.
    34. Antoine Dechezleprêtre & Matthieu Glachant & Ivan Haščič & Nick Johnstone & Yann Ménière, 2011. "Invention and Transfer of Climate Change--Mitigation Technologies: A Global Analysis," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 109-130, Winter.
    35. Daron Acemoglu, 2002. "Directed Technical Change," Review of Economic Studies, Oxford University Press, vol. 69(4), pages 781-809.
    36. Hoel, Michael, 1996. "Should a carbon tax be differentiated across sectors?," Journal of Public Economics, Elsevier, vol. 59(1), pages 17-32, January.
    37. Wipo, 2014. "World Intellectual Property Indicators, 2014 edition," WIPO Economics & Statistics Series, World Intellectual Property Organization - Economics and Statistics Division, number 2014:941, April.
    38. Gerlagh, Reyer & van der Zwaan, B. C. C., 2002. "Long-Term Substitutability between Environmental and Man-Made Goods," Journal of Environmental Economics and Management, Elsevier, vol. 44(2), pages 329-345, September.
    39. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    40. van der Werf, Edwin & Di Maria, Corrado, 2012. "Imperfect Environmental Policy and Polluting Emissions: The Green Paradox and Beyond," International Review of Environmental and Resource Economics, now publishers, vol. 6(2), pages 153-194, March.
    41. Corrado Maria & Edwin Werf, 2008. "Carbon leakage revisited: unilateral climate policy with directed technical change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 39(2), pages 55-74, February.
    42. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    43. Gerlagh, Reyer & Kuik, Onno, 2014. "Spill or leak? Carbon leakage with international technology spillovers: A CGE analysis," Energy Economics, Elsevier, vol. 45(C), pages 381-388.
    44. Hémous, David, 2013. "Environmental Policy and Directed Technical Change in a Global Economy: The Dynamic Impact of Unilateral Environmental Policies," CEPR Discussion Papers 9733, C.E.P.R. Discussion Papers.
    45. Golombek Rolf & Hoel Michael, 2004. "Unilateral Emission Reductions and Cross-Country Technology Spillovers," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 3(2), pages 1-27, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Witajewski-Baltvilks & Carolyn Fischer, 2023. "Green Innovation and Economic Growth in a North–South Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(3), pages 615-648, August.
    2. Lamperti, Francesco & Napoletano, Mauro & Roventini, Andrea, 2020. "Green Transitions And The Prevention Of Environmental Disasters: Market-Based Vs. Command-And-Control Policies," Macroeconomic Dynamics, Cambridge University Press, vol. 24(7), pages 1861-1880, October.
    3. Chiara Ravetti & Tania Theoduloz & Giulia Valacchi, 2020. "Buy Coal or Kick-Start Green Innovation? Energy Policies in an Open Economy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(1), pages 95-126, September.
    4. Ara Jo & Alena Miftakhova, 2022. "How Constant is Constant Elasticity of Substitution? Endogenous Substitution between Clean and Dirty Energy," CER-ETH Economics working paper series 22/369, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    5. Jan Witajewski-Baltvilks & Carolyn Fischer, 2018. "Green Innovation And Economic Growth In A North-South Model," IBS Working Papers 10/2018, Instytut Badan Strukturalnych.
    6. repec:hal:spmain:info:hdl:2441/14g286e42n8bl9is6h16b18kes is not listed on IDEAS
    7. Peter K. Kruse-Andersen, 2016. "Directed Technical Change and Economic Growth Effects of Environmental Policy," Discussion Papers 16-06, University of Copenhagen. Department of Economics.
    8. Oladi, Reza & Caplan, Arthur J. & Gilbert, John, 2018. "Sequestration and the engagement of developing economies in a global carbon market," Resource and Energy Economics, Elsevier, vol. 52(C), pages 50-63.
    9. Solodoha, Eliran & Rosenzweig, Stav & Harel, Shai, 2023. "Incentivizing angels to invest in start-ups: Evidence from a natural experiment," Research Policy, Elsevier, vol. 52(1).
    10. Hillebrand, Elmar & Hillebrand, Marten, 2019. "Optimal climate policies in a dynamic multi-country equilibrium model," Journal of Economic Theory, Elsevier, vol. 179(C), pages 200-239.
    11. Baccianti, Claudio, 2021. "Essays in economic growth and climate policy," Other publications TiSEM e5415454-40c2-4154-991e-6, Tilburg University, School of Economics and Management.
    12. David Hémous & Morten Olsen, 2021. "Directed Technical Change in Labor and Environmental Economics," Annual Review of Economics, Annual Reviews, vol. 13(1), pages 571-597, August.
    13. Fischer, Carolyn & Witajewski-Baltvilks, Jan, 2019. "Green Innovation And Economic Growth In A North-South Model," RFF Working Paper Series 19-04, Resources for the Future.
    14. Lassi Ahlvik & Inge van den Bijgaart, 2022. "Screening Green Innovation through Carbon Pricing," CESifo Working Paper Series 9931, CESifo.
    15. Peter K. Kruse-Andersen, 2019. "Directed Technical Change, Environmental Sustainability, and Population Growth," Discussion Papers 19-12, University of Copenhagen. Department of Economics.
    16. Wiskich, Anthony, 2021. "A comment on innovation with multiple equilibria and "The environment and directed technical change"," Energy Economics, Elsevier, vol. 94(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van den Bijgaart, Inge, 2016. "Essays in environmental economics and policy," Other publications TiSEM 298bee2a-cb08-4173-9fe1-8, Tilburg University, School of Economics and Management.
    2. Hémous, David, 2016. "The dynamic impact of unilateral environmental policies," Journal of International Economics, Elsevier, vol. 103(C), pages 80-95.
    3. Casey, Gregory, "undated". "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259959, Agricultural and Applied Economics Association.
    4. Chiara Ravetti & Tania Theoduloz & Giulia Valacchi, 2020. "Buy Coal or Kick-Start Green Innovation? Energy Policies in an Open Economy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(1), pages 95-126, September.
    5. Hémous, David, 2013. "Environmental Policy and Directed Technical Change in a Global Economy: The Dynamic Impact of Unilateral Environmental Policies," CEPR Discussion Papers 9733, C.E.P.R. Discussion Papers.
    6. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    7. Mattauch, Linus & Creutzig, Felix & Edenhofer, Ottmar, 2015. "Avoiding carbon lock-in: Policy options for advancing structural change," Economic Modelling, Elsevier, vol. 50(C), pages 49-63.
    8. Aliénor Cameron & Marc Baudry, 2023. "The case for carbon leakage and border adjustments: where do economists stand?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 25(3), pages 435-469, July.
    9. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    10. Wei Jin, 2012. "Can China Harness Globalization to Reap Carbon Savings? Modeling International Technology Diffusion in a Multi-region Framework," CAMA Working Papers 2012-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    11. Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.
    12. Massimiliano Mazzanti & Antonio Musolesi, 2020. "Modeling Green Knowledge Production and Environmental Policies with Semiparametric Panel Data Regression models," SEEDS Working Papers 1420, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Sep 2020.
    13. Antoine Dechezleprêtre & Matthieu Glachant, 2014. "Does Foreign Environmental Policy Influence Domestic Innovation? Evidence from the Wind Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 391-413, July.
    14. Reyer Gerlagh & Onno Kuik, 2007. "Carbon Leakage with International Technology Spillovers," Working Papers 2007.33, Fondazione Eni Enrico Mattei.
    15. Ignazio Musu, 2010. "Green Economy: great expectation or big illusion?," Working Papers 2010_01, Department of Economics, University of Venice "Ca' Foscari".
    16. Gerlagh, Reyer & Kuik, Onno, 2014. "Spill or leak? Carbon leakage with international technology spillovers: A CGE analysis," Energy Economics, Elsevier, vol. 45(C), pages 381-388.
    17. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    18. Corrado Maria & Edwin Werf, 2008. "Carbon leakage revisited: unilateral climate policy with directed technical change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 39(2), pages 55-74, February.
    19. Zhu, Zhishuang & Liao, Hua & Liu, Li, 2021. "The role of public energy R&D in energy conservation and transition: Experiences from IEA countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    20. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.

    More about this item

    Keywords

    Unilateral environmental policy; Directed technical change; Trade;
    All these keywords.

    JEL classification:

    • F18 - International Economics - - Trade - - - Trade and Environment
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eecrev:v:91:y:2017:i:c:p:305-327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eer .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.