IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i10p10558-10583d56338.html
   My bibliography  Save this article

Simulation of Forestland Dynamics in a Typical Deforestation and Afforestation Area under Climate Scenarios

Author

Listed:
  • Qun'ou Jiang

    (School of Soil and Water Conservation, Beijing Forestry University, Beijing 100038, China
    Key Laboratory of Soil and Water Conservation & Desertification Combat, Beijing Forest University, Beijing 100038, China
    Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    Center for Chinese Agricultural Policy, Chinese Academy of Sciences, Beijing 100101, China)

  • Yuwei Cheng

    (School of Soil and Water Conservation, Beijing Forestry University, Beijing 100038, China)

  • Qiutong Jin

    (School of Soil and Water Conservation, Beijing Forestry University, Beijing 100038, China)

  • Xiangzheng Deng

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    Center for Chinese Agricultural Policy, Chinese Academy of Sciences, Beijing 100101, China)

  • Yuanjing Qi

    (School of Soil and Water Conservation, Beijing Forestry University, Beijing 100038, China
    Key Laboratory of Soil and Water Conservation & Desertification Combat, Beijing Forest University, Beijing 100038, China)

Abstract

Forestland dynamics can affect the ecological security of a country and even the global environment, and therefore it is of great practical significance to understand the characteristics of temporal and spatial variations of forestland. Taking Jiangxi Province as the study area, this study first explored the driving mechanism of the natural environment and social economy on deforestation and afforestation using a simultaneous equation model. The results indicate that population size, topographic and geomorphologic factors, climate, and location play leading roles in influencing forestland density fluctuations. Specifically, the population size, economic development level, gross value of forestry production, climate conditions, and government policies are key influencing factors of afforestation. Deforestation is mainly influenced by agricultural population, non-agricultural economy, forestry production, forestry density, location, transportation, and climate. In addition, this study simulated the spatial distribution of land use and analyzed the spatial characteristics and variation trends of forestland area and quality under the Representative Concentration Pathways (RCPs) climate scenarios from 2010 to 2030 using the Conversion of Land Use and its Effects (CLUE) model. The results indicate that forestland declines under the Asia-Pacific integrated model (AIM) climate scenario. The environment tends to be heavily damaged under this kind of scenarios, and measures should be taken in order to protect the environment. Although the model for energy supply strategy alternatives and their general environmental impact (MESSAGE) scenario is to some extent better than the AIM scenario, destruction of the environment will still occur, and it is necessary to restrain deforestation and convert shrub land into forestland or garden land. These results can provide significant information for environmental protection, forest resource exploitation, and utilization in the areas experiencing deforestation and afforestation.

Suggested Citation

  • Qun'ou Jiang & Yuwei Cheng & Qiutong Jin & Xiangzheng Deng & Yuanjing Qi, 2015. "Simulation of Forestland Dynamics in a Typical Deforestation and Afforestation Area under Climate Scenarios," Energies, MDPI, vol. 8(10), pages 1-26, September.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:10:p:10558-10583:d:56338
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/10/10558/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/10/10558/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Malte Meinshausen & S. Smith & K. Calvin & J. Daniel & M. Kainuma & J-F. Lamarque & K. Matsumoto & S. Montzka & S. Raper & K. Riahi & A. Thomson & G. Velders & D.P. Vuuren, 2011. "The RCP greenhouse gas concentrations and their extensions from 1765 to 2300," Climatic Change, Springer, vol. 109(1), pages 213-241, November.
    2. Arabatzis, Garyfallos & Klonaris, Stathis, 2009. "An analysis of Greek wood and wood product imports: Evidence from the linear quadratic aids," Forest Policy and Economics, Elsevier, vol. 11(4), pages 266-270, July.
    3. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    4. Arabatzis, Garyfallos, 2008. "The individual and social characteristics of poplar investors-cultivators and the factors that affect the size of poplar plantations according to the EU Regulation 2080/92," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 9(2).
    5. Liu, Can & Mullan, Katrina & Liu, Hao & Zhu, Wenqing & Rong, Qingjiao, 2014. "The estimation of long term impacts of China's key priority forestry programs on rural household incomes," Journal of Forest Economics, Elsevier, vol. 20(3), pages 267-285.
    6. Jiang, Dong & Zhuang, Dafang & Fu, Jinying & Huang, Yaohuan & Wen, Kege, 2012. "Bioenergy potential from crop residues in China: Availability and distribution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1377-1382.
    7. Peter Verburg & Bas Eickhout & Hans Meijl, 2008. "A multi-scale, multi-model approach for analyzing the future dynamics of European land use," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(1), pages 57-77, March.
    8. Jagger, Pamela & Luckert, Martin (Marty) K. & Duchelle, Amy E. & Lund, Jens Friis & Sunderlin, William D., 2014. "Tenure and Forest Income: Observations from a Global Study on Forests and Poverty," World Development, Elsevier, vol. 64(S1), pages 43-55.
    9. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    10. Rose, Steven K., 2014. "Integrated assessment modeling of climate change adaptation in forestry and pasture land use: A review," Energy Economics, Elsevier, vol. 46(C), pages 548-554.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Wan & Huiyu Liu & Haibo Gong & Yujia Ren, 2020. "Effects of Climate and Land Use changes on Vegetation Dynamics in the Yangtze River Delta, China Based on Abrupt Change Analysis," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    2. Omaid Najmuddin & Zhihui Li & Rabnawaz Khan & Weiqing Zhuang, 2022. "Valuation of Land-Use/Land-Cover-Based Ecosystem Services in Afghanistan—An Assessment of the Past and Future," Land, MDPI, vol. 11(11), pages 1-32, October.
    3. Omaid Najmuddin & Faisal Mueen Qamer & Habib Gul & Weiqing Zhuang & Fan Zhang, 2021. "Cropland use preferences under land, water and labour constraints— implications for wheat self-sufficiency in the Kabul River basin, Afghanistan," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(4), pages 955-979, August.
    4. Sergio Alberto Monjardin-Armenta & Wenseslao Plata-Rocha & Carlos Eduardo Pacheco-Angulo & Cuauhtémoc Franco-Ochoa & Jesus Gabriel Rangel-Peraza, 2020. "Geospatial Simulation Model of Deforestation and Reforestation Using Multicriteria Evaluation," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    5. Shaikh Shamim Hasan & Xiangzheng Deng & Zhihui Li & Dongdong Chen, 2017. "Projections of Future Land Use in Bangladesh under the Background of Baseline, Ecological Protection and Economic Development," Sustainability, MDPI, vol. 9(4), pages 1-21, March.
    6. Abdus Samie & Xiangzheng Deng & Siqi Jia & Dongdong Chen, 2017. "Scenario-Based Simulation on Dynamics of Land-Use-Land-Cover Change in Punjab Province, Pakistan," Sustainability, MDPI, vol. 9(8), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregory Casey & Soheil Shayegh & Juan Moreno-Cruz & Martin Bunzl & Oded Galor & Ken Caldeira, 2019. "The Impact of Climate Change on Fertility," Working Papers 2019-2, Brown University, Department of Economics.
    2. Zhang, Feng & Zhang, Wenjuan & Li, Ming & Zhang, Yuan & Li, Fengmin & Li, Changbin, 2017. "Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change?," Agricultural Systems, Elsevier, vol. 150(C), pages 67-77.
    3. Tokimatsu, Koji & Konishi, Satoshi & Ishihara, Keiichi & Tezuka, Tetsuo & Yasuoka, Rieko & Nishio, Masahiro, 2016. "Role of innovative technologies under the global zero emissions scenarios," Applied Energy, Elsevier, vol. 162(C), pages 1483-1493.
    4. Gregory Casey & Soheil Shayegh & Juan Moreno-Cruz & Martin Bunzl & Oded Galor & Ken Caldeira, 2019. "The Impact of Climate Change on Fertility," Working Papers 2019-2, Brown University, Department of Economics.
    5. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    6. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    7. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
    8. Pedro Pérez-Cutillas & Pedro Baños Páez & Isabel Banos-González, 2020. "Variability of Water Balance under Climate Change Scenarios. Implications for Sustainability in the Rhône River Basin," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    9. Sabina Thaler & Herbert Formayer & Gerhard Kubu & Miroslav Trnka & Josef Eitzinger, 2021. "Effects of Bias-Corrected Regional Climate Projections and Their Spatial Resolutions on Crop Model Results under Different Climatic and Soil Conditions in Austria," Agriculture, MDPI, vol. 11(11), pages 1-39, October.
    10. Rusu, Liliana, 2019. "Evaluation of the near future wave energy resources in the Black Sea under two climate scenarios," Renewable Energy, Elsevier, vol. 142(C), pages 137-146.
    11. Detlef Vuuren & Elke Stehfest & Michel Elzen & Tom Kram & Jasper Vliet & Sebastiaan Deetman & Morna Isaac & Kees Klein Goldewijk & Andries Hof & Angelica Mendoza Beltran & Rineke Oostenrijk & Bas Ruij, 2011. "RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C," Climatic Change, Springer, vol. 109(1), pages 95-116, November.
    12. Dobes Leo & Jotzo Frank & Stern David I., 2014. "The Economics of Global Climate Change: A Historical Literature Review," Review of Economics, De Gruyter, vol. 65(3), pages 281-320, December.
    13. Grundy, Michael J. & Bryan, Brett A. & Nolan, Martin & Battaglia, Michael & Hatfield-Dodds, Steve & Connor, Jeffery D. & Keating, Brian A., 2016. "Scenarios for Australian agricultural production and land use to 2050," Agricultural Systems, Elsevier, vol. 142(C), pages 70-83.
    14. Alison Rothwell & Brad Ridoutt & William Bellotti, 2016. "Greenhouse Gas Implications of Peri-Urban Land Use Change in a Developed City under Four Future Climate Scenarios," Land, MDPI, vol. 5(4), pages 1-23, December.
    15. Vassiliki Varela & Diamando Vlachogiannis & Athanasios Sfetsos & Stelios Karozis & Nadia Politi & Frédérique Giroud, 2019. "Projection of Forest Fire Danger due to Climate Change in the French Mediterranean Region," Sustainability, MDPI, vol. 11(16), pages 1-13, August.
    16. Antolin, Luís A.S. & Heinemann, Alexandre B. & Marin, Fábio R., 2021. "Impact assessment of common bean availability in Brazil under climate change scenarios," Agricultural Systems, Elsevier, vol. 191(C).
    17. Farahmand, Shekoofeh & Hilmi, Nathalie & Cinar, Mine & Safa, Alain & Lam, Vicky W.Y. & Djoundourian, Salpie & Shahin, Wassim & Ben Lamine, Emna & Schickele, Alexandre & Guidetti, Paolo & Allemand, Den, 2023. "Climate change impacts on Mediterranean fisheries: A sensitivity and vulnerability analysis for main commercial species," Ecological Economics, Elsevier, vol. 211(C).
    18. Gilardelli, Carlo & Confalonieri, Roberto & Cappelli, Giovanni Alessandro & Bellocchi, Gianni, 2018. "Sensitivity of WOFOST-based modelling solutions to crop parameters under climate change," Ecological Modelling, Elsevier, vol. 368(C), pages 1-14.
    19. Pignalosa, Antonio & Silvestri, Nicola & Pugliese, Francesco & Corniello, Alfonso & Gerundo, Carlo & Del Seppia, Nicola & Lucchesi, Massimo & Coscini, Nicola & De Paola, Francesco & Giugni, Maurizio, 2022. "Long-term simulations of Nature-Based Solutions effects on runoff and soil losses in a flat agricultural area within the catchment of Lake Massaciuccoli (Central Italy)," Agricultural Water Management, Elsevier, vol. 273(C).
    20. Huanbi Yue & Chunyang He & Qingxu Huang & Da Zhang & Peijun Shi & Enayat A. Moallemi & Fangjin Xu & Yang Yang & Xin Qi & Qun Ma & Brett A. Bryan, 2024. "Substantially reducing global PM2.5-related deaths under SDG3.9 requires better air pollution control and healthcare," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:10:p:10558-10583:d:56338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.