IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4794-d852228.html
   My bibliography  Save this article

A Backcasting Analysis toward a 100% Renewable Energy Transition by 2040 for Off-Grid Islands

Author

Listed:
  • Khrisydel Rhea M. Supapo

    (Engineering Graduate Program, School of Engineering, University of San Carlos, Cebu City 6000, Philippines
    Department of Electrical Engineering, Palawan State University, Puerto Princesa 5300, Philippines)

  • Lorafe Lozano

    (Center for Research in Energy Systems and Technologies, School of Engineering, University of San Carlos, Cebu City 6000, Philippines
    Department of Industrial Engineering, University of San Carlos, Cebu City 6000, Philippines)

  • Ian Dominic F. Tabañag

    (Engineering Graduate Program, School of Engineering, University of San Carlos, Cebu City 6000, Philippines
    Philippine Council for Industry, Energy and Emerging Technology Research and Development, Department of Science and Technology (DOST-PCIEERD), Taguig 1631, Philippines)

  • Edward M. Querikiol

    (Engineering Graduate Program, School of Engineering, University of San Carlos, Cebu City 6000, Philippines
    Center for Research in Energy Systems and Technologies, School of Engineering, University of San Carlos, Cebu City 6000, Philippines
    Department of Electrical and Electronics Engineering, Center for Research in Energy Systems and Technologies (CREST), University of San Carlos, Cebu City 6000, Philippines)

Abstract

The rapid increase in energy consumption results from population growth and technological advancement, while economic growth also relies heavily on the availability of energy. As fossil fuels become scarcer and greenhouse gas emissions increase, renewable energy sources are regarded as practical solutions to meet increasing energy demands. This study aims to develop a sustainable energy transition pathway for off-grid island communities in the Philippines. It adopts the concept of backcasting analysis, focusing on the demand and supply side of the energy transition. The transition considers three milestones: business as usual (BAU), minimal transition scenario (MTS), and absolute transition scenario (ATS). The techno-enviro-economic analysis is performed for each milestone to determine the optimal energy resource mix while addressing the three dimensions of the Energy Trilemma: energy security, energy equity, and environmental sustainability. The approach is implemented in three off-grid island municipalities in Palawan, Philippines: Araceli, Balabac, and Cuyo. The results suggest that the optimal electrification configuration for each island at the MTS is a hybrid system consisting of a diesel generator and solar photovoltaics with batteries, while at the ATS, it is a hybrid system of solar photovoltaics and wind with batteries. In addition, greenhouse gas emissions are reduced by 79.7% in Araceli, 78.7% in Balabac, and 41.2% in Cuyo from the BAU scenario to MTS. The actors involved in said transition are identified. A transitional pathway can be seen as a strategic plan to achieve the desired goal: to have a sustainable energy transition.

Suggested Citation

  • Khrisydel Rhea M. Supapo & Lorafe Lozano & Ian Dominic F. Tabañag & Edward M. Querikiol, 2022. "A Backcasting Analysis toward a 100% Renewable Energy Transition by 2040 for Off-Grid Islands," Energies, MDPI, vol. 15(13), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4794-:d:852228
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4794/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4794/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zimmermann, Martin & Darkow, Inga-Lena & von der Gracht, Heiko A., 2012. "Integrating Delphi and participatory backcasting in pursuit of trustworthiness — The case of electric mobility in Germany," Technological Forecasting and Social Change, Elsevier, vol. 79(9), pages 1605-1621.
    2. Wen, Zong-guo & Di, Jing-han & Yu, Xue-wei & Zhang, Xuan, 2017. "Analyses of CO2 mitigation roadmap in China’s power industry: Using a Backcasting Model," Applied Energy, Elsevier, vol. 205(C), pages 644-653.
    3. Bellocchi, Sara & Gambini, Marco & Manno, Michele & Stilo, Tommaso & Vellini, Michela, 2018. "Positive interactions between electric vehicles and renewable energy sources in CO2-reduced energy scenarios: The Italian case," Energy, Elsevier, vol. 161(C), pages 172-182.
    4. Kumar Nandi, Sanjoy & Ranjan Ghosh, Himangshu, 2010. "Techno-economical analysis of off-grid hybrid systems at Kutubdia Island, Bangladesh," Energy Policy, Elsevier, vol. 38(2), pages 976-980, February.
    5. Hong, Jong Ho & Kim, Jitae & Son, Wonik & Shin, Heeyoung & Kim, Nahyun & Lee, Woong Ki & Kim, Jintae, 2019. "Long-term energy strategy scenarios for South Korea: Transition to a sustainable energy system," Energy Policy, Elsevier, vol. 127(C), pages 425-437.
    6. Park, Nyun-Bae & Yun, Sun-Jin & Jeon, Eui-Chan, 2013. "An analysis of long-term scenarios for the transition to renewable energy in the Korean electricity sector," Energy Policy, Elsevier, vol. 52(C), pages 288-296.
    7. Merzic, A. & Music, M. & Haznadar, Z., 2017. "Conceptualizing sustainable development of conventional power systems in developing countries – A contribution towards low carbon future," Energy, Elsevier, vol. 126(C), pages 112-123.
    8. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2020. "Investigating the economics of the power sector under high penetration of variable renewable energies," Applied Energy, Elsevier, vol. 267(C).
    9. Kishita, Yusuke & McLellan, Benjamin C. & Giurco, Damien & Aoki, Kazumasu & Yoshizawa, Go & Handoh, Itsuki C., 2017. "Designing backcasting scenarios for resilient energy futures," Technological Forecasting and Social Change, Elsevier, vol. 124(C), pages 114-125.
    10. Olsson, Linda & Hjalmarsson, Linnea & Wikström, Martina & Larsson, Mårten, 2015. "Bridging the implementation gap: Combining backcasting and policy analysis to study renewable energy in urban road transport," Transport Policy, Elsevier, vol. 37(C), pages 72-82.
    11. Hori, Keiko & Kim, Jaegyu & Kawase, Reina & Kimura, Michinori & Matsui, Takanori & Machimura, Takashi, 2020. "Local energy system design support using a renewable energy mix multi-objective optimization model and a co-creative optimization process," Renewable Energy, Elsevier, vol. 156(C), pages 1278-1291.
    12. Das, Barun K. & Hoque, Najmul & Mandal, Soumya & Pal, Tapas Kumar & Raihan, Md Abu, 2017. "A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh," Energy, Elsevier, vol. 134(C), pages 775-788.
    13. Pregger, Thomas & Nitsch, Joachim & Naegler, Tobias, 2013. "Long-term scenarios and strategies for the deployment of renewable energies in Germany," Energy Policy, Elsevier, vol. 59(C), pages 350-360.
    14. Ashina, Shuichi & Fujino, Junichi & Masui, Toshihiko & Ehara, Tomoki & Hibino, Go, 2012. "A roadmap towards a low-carbon society in Japan using backcasting methodology: Feasible pathways for achieving an 80% reduction in CO2 emissions by 2050," Energy Policy, Elsevier, vol. 41(C), pages 584-598.
    15. Sykes, Pete & Bell, Margaret & Dissanayake, Dilum, 2018. "Combined use of a backcast scenario and cross-impact matrix analysis to identify causes of uncertainty in a nascent transport infrastructure project," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 124-140.
    16. Chauhan, Anurag & Saini, R.P., 2016. "Techno-economic optimization based approach for energy management of a stand-alone integrated renewable energy system for remote areas of India," Energy, Elsevier, vol. 94(C), pages 138-156.
    17. Mattila, Tuomas & Antikainen, Riina, 2011. "Backcasting sustainable freight transport systems for Europe in 2050," Energy Policy, Elsevier, vol. 39(3), pages 1241-1248, March.
    18. Haghighat Mamaghani, Alireza & Avella Escandon, Sebastian Alberto & Najafi, Behzad & Shirazi, Ali & Rinaldi, Fabio, 2016. "Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia," Renewable Energy, Elsevier, vol. 97(C), pages 293-305.
    19. Salehin, Sayedus & Ferdaous, M. Tanvirul & Chowdhury, Ridhwan M. & Shithi, Sumaia Shahid & Rofi, M.S.R. Bhuiyan & Mohammed, Mahir Asif, 2016. "Assessment of renewable energy systems combining techno-economic optimization with energy scenario analysis," Energy, Elsevier, vol. 112(C), pages 729-741.
    20. Nogués, Soledad & González-González, Esther & Cordera, Rubén, 2020. "New urban planning challenges under emerging autonomous mobility: evaluating backcasting scenarios and policies through an expert survey," Land Use Policy, Elsevier, vol. 95(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Efstathios E. Michaelides, 2022. "Transition to Renewable Energy for Communities: Energy Storage Requirements and Dissipation," Energies, MDPI, vol. 15(16), pages 1-11, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    2. Soria-Lara, Julio A. & Banister, David, 2017. "Participatory visioning in transport backcasting studies: Methodological lessons from Andalusia (Spain)," Journal of Transport Geography, Elsevier, vol. 58(C), pages 113-126.
    3. Soria-Lara, Julio A. & Banister, David, 2017. "Dynamic participation processes for policy packaging in transport backcasting studies," Transport Policy, Elsevier, vol. 58(C), pages 19-30.
    4. Soria-Lara, Julio A. & Ariza-Álvarez, Amor & Aguilera-Benavente, Francisco & Cascajo, Rocío & Arce-Ruiz, Rosa M. & López, Cristina & Gómez-Delgado, Montserrat, 2021. "Participatory visioning for building disruptive future scenarios for transport and land use planning," Journal of Transport Geography, Elsevier, vol. 90(C).
    5. Jann Michael Weinand & Maximilian Hoffmann & Jan Gopfert & Tom Terlouw & Julian Schonau & Patrick Kuckertz & Russell McKenna & Leander Kotzur & Jochen Lin{ss}en & Detlef Stolten, 2022. "Global LCOEs of decentralized off-grid renewable energy systems," Papers 2212.12742, arXiv.org, revised Mar 2023.
    6. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Pascasio, Jethro Daniel A. & Esparcia, Eugene A. & Castro, Michael T. & Ocon, Joey D., 2021. "Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands," Renewable Energy, Elsevier, vol. 179(C), pages 1589-1607.
    8. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    9. Li, Chong & Zhou, Dequn & Wang, Hui & Lu, Yuzheng & Li, Dongdong, 2020. "Techno-economic performance study of stand-alone wind/diesel/battery hybrid system with different battery technologies in the cold region of China," Energy, Elsevier, vol. 192(C).
    10. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    11. Pereverza, Kateryna & Pasichnyi, Oleksii & Kordas, Olga, 2019. "Modular participatory backcasting: A unifying framework for strategic planning in the heating sector," Energy Policy, Elsevier, vol. 124(C), pages 123-134.
    12. Mayer, Martin János & Biró, Bence & Szücs, Botond & Aszódi, Attila, 2023. "Probabilistic modeling of future electricity systems with high renewable energy penetration using machine learning," Applied Energy, Elsevier, vol. 336(C).
    13. Mustapa, Siti Indati & Bekhet, Hussain Ali, 2016. "Analysis of CO2 emissions reduction in the Malaysian transportation sector: An optimisation approach," Energy Policy, Elsevier, vol. 89(C), pages 171-183.
    14. Cano, Antonio & Arévalo, Paul & Jurado, Francisco, 2020. "Energy analysis and techno-economic assessment of a hybrid PV/HKT/BAT system using biomass gasifier: Cuenca-Ecuador case study," Energy, Elsevier, vol. 202(C).
    15. Come Zebra, Emília Inês & van der Windt, Henny J. & Nhumaio, Geraldo & Faaij, André P.C., 2021. "A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    16. Li, Jinze & Liu, Pei & Li, Zheng, 2020. "Optimal design and techno-economic analysis of a solar-wind-biomass off-grid hybrid power system for remote rural electrification: A case study of west China," Energy, Elsevier, vol. 208(C).
    17. Hegazy Rezk & N. Kanagaraj & Mujahed Al-Dhaifallah, 2020. "Design and Sensitivity Analysis of Hybrid Photovoltaic-Fuel-Cell-Battery System to Supply a Small Community at Saudi NEOM City," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    18. Ariza-Álvarez, Amor & Soria-Lara, Julio A. & Arce-Ruiz, Rosa M. & López-Lambas, María Eugenia & Jimenez-Espada, Montaña, 2021. "Experimenting with scenario-building narratives to integrate land use and transport," Transport Policy, Elsevier, vol. 101(C), pages 57-70.
    19. Sarkki, Simo & Pihlajamäki, Mia, 2019. "Baltic herring for food: Shades of grey in how backcasting recommendations work across exploratory scenarios," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 200-209.
    20. Abraham Alem Kebede & Maitane Berecibar & Thierry Coosemans & Maarten Messagie & Towfik Jemal & Henok Ayele Behabtu & Joeri Van Mierlo, 2020. "A Techno-Economic Optimization and Performance Assessment of a 10 kW P Photovoltaic Grid-Connected System," Sustainability, MDPI, vol. 12(18), pages 1-29, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4794-:d:852228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.