IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v336y2023ics0306261923001654.html
   My bibliography  Save this article

Probabilistic modeling of future electricity systems with high renewable energy penetration using machine learning

Author

Listed:
  • Mayer, Martin János
  • Biró, Bence
  • Szücs, Botond
  • Aszódi, Attila

Abstract

The increasing penetration of weather-dependent renewable energy generation calls for high-resolution modeling of the possible future energy mixes to support the energy strategy and policy decisions. Simulations relying on the data of only a few years, however, are not only unreliable but also unable to quantify the uncertainty resulting from the year-to-year variability of the weather conditions. This paper presents a new method based on artificial neural networks that map the relationship between the weather data from atmospheric reanalysis and the photovoltaic and wind power generation and the electric load. The regression models are trained based on the data of the last 3 to 6 years, and then they are used to generate synthetic hourly renewable power production and load profiles for 42 years as an ensemble representation of possible outcomes in the future. The modeled profiles are post-processed by a novel variance-correction method that ensures the statistical similarity of the modeled and real data and thus the reliability of the simulation based on these profiles.

Suggested Citation

  • Mayer, Martin János & Biró, Bence & Szücs, Botond & Aszódi, Attila, 2023. "Probabilistic modeling of future electricity systems with high renewable energy penetration using machine learning," Applied Energy, Elsevier, vol. 336(C).
  • Handle: RePEc:eee:appene:v:336:y:2023:i:c:s0306261923001654
    DOI: 10.1016/j.apenergy.2023.120801
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923001654
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120801?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shirizadeh, Behrang & Quirion, Philippe, 2022. "Do multi-sector energy system optimization models need hourly temporal resolution? A case study with an investment and dispatch model applied to France," Applied Energy, Elsevier, vol. 305(C).
    2. Huang, Qian & Li, Jinghua & Zhu, Mengshu, 2020. "An improved convolutional neural network with load range discretization for probabilistic load forecasting," Energy, Elsevier, vol. 203(C).
    3. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    4. Bedi, Jatin & Toshniwal, Durga, 2019. "Deep learning framework to forecast electricity demand," Applied Energy, Elsevier, vol. 238(C), pages 1312-1326.
    5. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
    6. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2020. "Investigating the economics of the power sector under high penetration of variable renewable energies," Applied Energy, Elsevier, vol. 267(C).
    7. Casalicchio, Valeria & Manzolini, Giampaolo & Prina, Matteo Giacomo & Moser, David, 2022. "From investment optimization to fair benefit distribution in renewable energy community modelling," Applied Energy, Elsevier, vol. 310(C).
    8. Ohba, Masamichi & Kanno, Yuki & Nohara, Daisuke, 2022. "Climatology of dark doldrums in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    9. Mashlakov, Aleksei & Kuronen, Toni & Lensu, Lasse & Kaarna, Arto & Honkapuro, Samuli, 2021. "Assessing the performance of deep learning models for multivariate probabilistic energy forecasting," Applied Energy, Elsevier, vol. 285(C).
    10. Johann Baumgartner & Katharina Gruber & Sofia G. Simoes & Yves-Marie Saint-Drenan & Johannes Schmidt, 2020. "Less Information, Similar Performance: Comparing Machine Learning-Based Time Series of Wind Power Generation to Renewables.ninja," Energies, MDPI, vol. 13(9), pages 1-23, May.
    11. Pöstges, Arne & Bucksteeg, Michael & Ruhnau, Oliver & Böttger, Diana & Haller, Markus & Künle, Eglantine & Ritter, David & Schmitz, Richard & Wiedmann, Michael, 2022. "Phasing out coal: An impact analysis comparing five large-scale electricity market models," Applied Energy, Elsevier, vol. 319(C).
    12. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    13. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    14. Liu, Yaqin & Zhang, Jingchao & Zhu, Zhishuang & Zhao, Guohao, 2019. "Impacts of the 3E (economy, energy and environment) coordinated development on energy mix in China: The multi-objective optimisation perspective," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 56-64.
    15. Rakipour, Davood & Barati, Hassan, 2019. "Probabilistic optimization in operation of energy hub with participation of renewable energy resources and demand response," Energy, Elsevier, vol. 173(C), pages 384-399.
    16. Hori, Keiko & Kim, Jaegyu & Kawase, Reina & Kimura, Michinori & Matsui, Takanori & Machimura, Takashi, 2020. "Local energy system design support using a renewable energy mix multi-objective optimization model and a co-creative optimization process," Renewable Energy, Elsevier, vol. 156(C), pages 1278-1291.
    17. Ostojic, Gordana & Stankovski, Stevan & Ratkovic, Zeljko & Miladinovic, Ljubomir & Maksimovic, Rado, 2013. "Development of hydro potential in Republic Srpska," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 196-203.
    18. Mayer, Martin János, 2022. "Benefits of physical and machine learning hybridization for photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Mayer, Martin János & Gróf, Gyula, 2021. "Extensive comparison of physical models for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 283(C).
    20. Kim, Deockho & Hur, Jin, 2018. "Short-term probabilistic forecasting of wind energy resources using the enhanced ensemble method," Energy, Elsevier, vol. 157(C), pages 211-226.
    21. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    22. Kim, SunOh & Hur, Jin, 2021. "Probabilistic power output model of wind generating resources for network congestion management," Renewable Energy, Elsevier, vol. 179(C), pages 1719-1726.
    23. Guo, Zhifeng & Zhou, Kaile & Zhang, Xiaoling & Yang, Shanlin, 2018. "A deep learning model for short-term power load and probability density forecasting," Energy, Elsevier, vol. 160(C), pages 1186-1200.
    24. Wang, Shunli & Takyi-Aninakwa, Paul & Jin, Siyu & Yu, Chunmei & Fernandez, Carlos & Stroe, Daniel-Ioan, 2022. "An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation," Energy, Elsevier, vol. 254(PA).
    25. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    26. Kies, Alexander & Schyska, Bruno U. & Bilousova, Mariia & El Sayed, Omar & Jurasz, Jakub & Stoecker, Horst, 2021. "Critical review of renewable generation datasets and their implications for European power system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    27. Behm, Christian & Nolting, Lars & Praktiknjo, Aaron, 2020. "How to model European electricity load profiles using artificial neural networks," Applied Energy, Elsevier, vol. 277(C).
    28. Dumas, Jonathan & Wehenkel, Antoine & Lanaspeze, Damien & Cornélusse, Bertrand & Sutera, Antonio, 2022. "A deep generative model for probabilistic energy forecasting in power systems: normalizing flows," Applied Energy, Elsevier, vol. 305(C).
    29. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    30. Markovics, Dávid & Mayer, Martin János, 2022. "Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    31. Elattar, Ehab E. & ElSayed, Salah K., 2020. "Probabilistic energy management with emission of renewable micro-grids including storage devices based on efficient salp swarm algorithm," Renewable Energy, Elsevier, vol. 153(C), pages 23-35.
    32. Ohlendorf, Nils & Schill, Wolf-Peter, 2020. "Frequency and duration of low-wind-power events in Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 15(8).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rehman, Anis Ur & Shafiq, Aqib & Ullah, Zia & Iqbal, Sheeraz & Hasanien, Hany M., 2023. "Implications of smart grid and customer involvement in energy management and economics," Energy, Elsevier, vol. 276(C).
    2. Martin Kittel & Wolf-Peter Schill, 2024. "Measuring the Dunkelflaute: How (not) to analyze variable renewable energy shortage," Papers 2402.06758, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kies, Alexander & Schyska, Bruno U. & Bilousova, Mariia & El Sayed, Omar & Jurasz, Jakub & Stoecker, Horst, 2021. "Critical review of renewable generation datasets and their implications for European power system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2020. "Investigating the economics of the power sector under high penetration of variable renewable energies," Applied Energy, Elsevier, vol. 267(C).
    3. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    4. Lu, Shixiang & Xu, Qifa & Jiang, Cuixia & Liu, Yezheng & Kusiak, Andrew, 2022. "Probabilistic load forecasting with a non-crossing sparse-group Lasso-quantile regression deep neural network," Energy, Elsevier, vol. 242(C).
    5. Gyanwali, Khem & Komiyama, Ryoichi & Fujii, Yasumasa, 2020. "Representing hydropower in the dynamic power sector model and assessing clean energy deployment in the power generation mix of Nepal," Energy, Elsevier, vol. 202(C).
    6. Sven Teske & Thomas Pregger & Sonja Simon & Tobias Naegler & Johannes Pagenkopf & Özcan Deniz & Bent van den Adel & Kate Dooley & Malte Meinshausen, 2021. "It Is Still Possible to Achieve the Paris Climate Agreement: Regional, Sectoral, and Land-Use Pathways," Energies, MDPI, vol. 14(8), pages 1-25, April.
    7. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    8. Simon Hilpert, 2020. "Effects of Decentral Heat Pump Operation on Electricity Storage Requirements in Germany," Energies, MDPI, vol. 13(11), pages 1-19, June.
    9. Backe, Stian & Zwickl-Bernhard, Sebastian & Schwabeneder, Daniel & Auer, Hans & Korpås, Magnus & Tomasgard, Asgeir, 2022. "Impact of energy communities on the European electricity and heating system decarbonization pathway: Comparing local and global flexibility responses," Applied Energy, Elsevier, vol. 323(C).
    10. Behrang Shirizadeh, 2020. "Carbon-neutral future with sector-coupling; relative role of different mitigation options in energy sector," Working Papers 2020.19, FAERE - French Association of Environmental and Resource Economists.
    11. Abuzayed, Anas & Hartmann, Niklas, 2022. "MyPyPSA-Ger: Introducing CO2 taxes on a multi-regional myopic roadmap of the German electricity system towards achieving the 1.5 °C target by 2050," Applied Energy, Elsevier, vol. 310(C).
    12. Bernhard-Johannes Jesse & Simon Morgenthaler & Bastian Gillessen & Simon Burges & Wilhelm Kuckshinrichs, 2020. "Potential for Optimization in European Power Plant Fleet Operation," Energies, MDPI, vol. 13(3), pages 1-22, February.
    13. Sarmas, Elissaios & Spiliotis, Evangelos & Stamatopoulos, Efstathios & Marinakis, Vangelis & Doukas, Haris, 2023. "Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models," Renewable Energy, Elsevier, vol. 216(C).
    14. Matsuo Yuji & Alloysius Joko Purwanto & Leong Siew Meng (ed.), 2021. "The Economics and Risks of Power Systems with High Shares of Renewable Energies," Books, Economic Research Institute for ASEAN and East Asia (ERIA), number 2021-RPR-13, July.
    15. Morgenthaler, Simon & Kuckshinrichs, Wilhelm & Witthaut, Dirk, 2020. "Optimal system layout and locations for fully renewable high temperature co-electrolysis," Applied Energy, Elsevier, vol. 260(C).
    16. Fabian Stöckl & Alexander Zerrahn, 2023. "Substituting Clean for Dirty Energy: A Bottom-Up Analysis," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(3), pages 819-863.
    17. Thomaßen, Georg & Redl, Christian & Bruckner, Thomas, 2022. "Will the energy-only market collapse? On market dynamics in low-carbon electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    18. Tino Aboumahboub & Robert J. Brecha & Himalaya Bir Shrestha & Ursula Fuentes & Andreas Geiges & William Hare & Michiel Schaeffer & Lara Welder & Matthew J. Gidden, 2020. "Decarbonization of Australia’s Energy System: Integrated Modeling of the Transformation of Electricity, Transportation, and Industrial Sectors," Energies, MDPI, vol. 13(15), pages 1-39, July.
    19. Pavičević, Matija & Mangipinto, Andrea & Nijs, Wouter & Lombardi, Francesco & Kavvadias, Konstantinos & Jiménez Navarro, Juan Pablo & Colombo, Emanuela & Quoilin, Sylvain, 2020. "The potential of sector coupling in future European energy systems: Soft linking between the Dispa-SET and JRC-EU-TIMES models," Applied Energy, Elsevier, vol. 267(C).
    20. António Couto & Paula Costa & Teresa Simões, 2021. "Identification of Extreme Wind Events Using a Weather Type Classification," Energies, MDPI, vol. 14(13), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:336:y:2023:i:c:s0306261923001654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.