IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i8p3341-d347954.html
   My bibliography  Save this article

Design and Sensitivity Analysis of Hybrid Photovoltaic-Fuel-Cell-Battery System to Supply a Small Community at Saudi NEOM City

Author

Listed:
  • Hegazy Rezk

    (Electrical Engineering Department, College of Engineering at Wadi Aldawaser, Prince Sattam Bin Abdulaziz University, Al-Kharj 11911, Saudi Arabia
    Electrical Engineering Department, Faculty of Engineering, Minia University, Minia 61517, Egypt)

  • N. Kanagaraj

    (Electrical Engineering Department, College of Engineering at Wadi Aldawaser, Prince Sattam Bin Abdulaziz University, Al-Kharj 11911, Saudi Arabia)

  • Mujahed Al-Dhaifallah

    (Systems Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

Abstract

This research paper aimed to design and present a sensitivity analysis of a hybrid photovoltaic-fuel-cell-battery (PV/FC/B) system to supply a small community for the recently planned grand city NEOM in Saudi Arabia. The location of the city of NEOM is characterized by a high average level of solar irradiance. The average daily horizontal solar radiation is around 5.85 kWh/m 2 . A detailed feasibility and techno-economic evaluation of a PV/FC/B hybrid energy system were done to supply a daily load demand of 500 kWh (peak-35 kW). The PV array was the main source to meet the load demand. During the surplus periods, the battery was charged using extra energy and powered the electrolyzer for hydrogen production. The produced hydrogen was stored for later use. During the deficit periods, the FC and/or battery supported the PV array to meet the load demand. Two benchmarks, the cost of energy (COE) and net present cost (NPC), were used to identify the best size of the PV/FC/B system. Variation of the tilt angle of the PV array and the derating factor were considered to determine the effect of the performance of the PV/FC/B system’s COE and NPC. The main findings confirmed that a 200 kW PV array, 40 kW FC, 96 batteries, 50 kW converter, 110 kW electrolyzer, and 50 kg hydrogen tank was the best option to supply the load demand. The values of total NPC and COE were $500,823 and $0.126/kWh. The annual excess energy was very sensitive to the declination angle of the PV array. The minimum annual excess energy was achieved at an angle of 30 degrees. It decreased by 75.7% and by 60.6% compared to a horizontal surface and 50 degrees of declination, respectively. To prove the viability of the proposed system, a comparison with grid extension along with a diesel generation system was carried out.

Suggested Citation

  • Hegazy Rezk & N. Kanagaraj & Mujahed Al-Dhaifallah, 2020. "Design and Sensitivity Analysis of Hybrid Photovoltaic-Fuel-Cell-Battery System to Supply a Small Community at Saudi NEOM City," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3341-:d:347954
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/8/3341/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/8/3341/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rehman, Shafiqur & Al-Hadhrami, Luai M., 2010. "Study of a solar PV–diesel–battery hybrid power system for a remotely located population near Rafha, Saudi Arabia," Energy, Elsevier, vol. 35(12), pages 4986-4995.
    2. Saheb-Koussa, D. & Haddadi, M. & Belhamel, M., 2009. "Economic and technical study of a hybrid system (wind-photovoltaic-diesel) for rural electrification in Algeria," Applied Energy, Elsevier, vol. 86(7-8), pages 1024-1030, July.
    3. Baghaee, H.R. & Mirsalim, M. & Gharehpetian, G.B. & Talebi, H.A., 2016. "Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system," Energy, Elsevier, vol. 115(P1), pages 1022-1041.
    4. Clarke, Daniel P. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2015. "Multi-objective optimisation of renewable hybrid energy systems with desalination," Energy, Elsevier, vol. 88(C), pages 457-468.
    5. Lau, K.Y. & Tan, C.W. & Yatim, A.H.M., 2015. "Photovoltaic systems for Malaysian islands: Effects of interest rates, diesel prices and load sizes," Energy, Elsevier, vol. 83(C), pages 204-216.
    6. Deshmukh, M.K. & Deshmukh, S.S., 2008. "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 235-249, January.
    7. Das, Barun K. & Hoque, Najmul & Mandal, Soumya & Pal, Tapas Kumar & Raihan, Md Abu, 2017. "A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh," Energy, Elsevier, vol. 134(C), pages 775-788.
    8. Ren, Hongbo & Wu, Qiong & Gao, Weijun & Zhou, Weisheng, 2016. "Optimal operation of a grid-connected hybrid PV/fuel cell/battery energy system for residential applications," Energy, Elsevier, vol. 113(C), pages 702-712.
    9. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island," Applied Energy, Elsevier, vol. 121(C), pages 149-158.
    10. Myeong Jin Ko & Yong Shik Kim & Min Hee Chung & Hung Chan Jeon, 2015. "Multi-Objective Optimization Design for a Hybrid Energy System Using the Genetic Algorithm," Energies, MDPI, vol. 8(4), pages 1-26, April.
    11. Qoaider, Louy & Steinbrecht, Dieter, 2010. "Photovoltaic systems: A cost competitive option to supply energy to off-grid agricultural communities in arid regions," Applied Energy, Elsevier, vol. 87(2), pages 427-435, February.
    12. Kanase-Patil, A.B. & Saini, R.P. & Sharma, M.P., 2011. "Sizing of integrated renewable energy system based on load profiles and reliability index for the state of Uttarakhand in India," Renewable Energy, Elsevier, vol. 36(11), pages 2809-2821.
    13. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    14. Shaahid, S.M. & El-Amin, I., 2009. "Techno-economic evaluation of off-grid hybrid photovoltaic-diesel-battery power systems for rural electrification in Saudi Arabia--A way forward for sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 625-633, April.
    15. Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
    16. Kusakana, Kanzumba, 2015. "Operation cost minimization of photovoltaic–diesel–battery hybrid systems," Energy, Elsevier, vol. 85(C), pages 645-653.
    17. Tyagi, V.V. & Rahim, Nurul A.A. & Rahim, N.A. & Selvaraj, Jeyraj A./L., 2013. "Progress in solar PV technology: Research and achievement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 443-461.
    18. Mohamed, Mohamed A. & Zaki Diab, Ahmed A. & Rezk, Hegazy, 2019. "Partial shading mitigation of PV systems via different meta-heuristic techniques," Renewable Energy, Elsevier, vol. 130(C), pages 1159-1175.
    19. Rezk, Hegazy & Sayed, Enas Taha & Al-Dhaifallah, Mujahed & Obaid, M. & El-Sayed, Abou Hashema M. & Abdelkareem, Mohammad Ali & Olabi, A.G., 2019. "Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system," Energy, Elsevier, vol. 175(C), pages 423-433.
    20. Haghighat Mamaghani, Alireza & Avella Escandon, Sebastian Alberto & Najafi, Behzad & Shirazi, Ali & Rinaldi, Fabio, 2016. "Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia," Renewable Energy, Elsevier, vol. 97(C), pages 293-305.
    21. Courtecuisse, Vincent & Sprooten, Jonathan & Robyns, Benoît & Petit, Marc & Francois, Bruno & Deuse, Jacques, 2010. "A methodology to design a fuzzy logic based supervision of Hybrid Renewable Energy Systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(2), pages 208-224.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raluca-Andreea Felseghi & Ioan Așchilean & Nicoleta Cobîrzan & Andrei Mircea Bolboacă & Maria Simona Raboaca, 2021. "Optimal Synergy between Photovoltaic Panels and Hydrogen Fuel Cells for Green Power Supply of a Green Building—A Case Study," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    2. Francesca Ceglia & Elisa Marrasso & Carlo Roselli & Maurizio Sasso, 2021. "Small Renewable Energy Community: The Role of Energy and Environmental Indicators for Power Grid," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    3. Humberto Vidal & Marco Rivera & Patrick Wheeler & Nicolás Vicencio, 2020. "The Analysis Performance of a Grid-Connected 8.2 kWp Photovoltaic System in the Patagonia Region," Sustainability, MDPI, vol. 12(21), pages 1-16, November.
    4. Mohammed Kharrich & Salah Kamel & Ali S. Alghamdi & Ahmad Eid & Mohamed I. Mosaad & Mohammed Akherraz & Mamdouh Abdel-Akher, 2021. "Optimal Design of an Isolated Hybrid Microgrid for Enhanced Deployment of Renewable Energy Sources in Saudi Arabia," Sustainability, MDPI, vol. 13(9), pages 1-26, April.
    5. Francesca Ceglia & Elisa Marrasso & Giovanna Pallotta & Carlo Roselli & Maurizio Sasso, 2022. "The State of the Art of Smart Energy Communities: A Systematic Review of Strengths and Limits," Energies, MDPI, vol. 15(9), pages 1-28, May.
    6. Nikolas Schöne & Boris Heinz, 2023. "Semi-Systematic Literature Review on the Contribution of Hydrogen to Universal Access to Energy in the Rationale of Sustainable Development Goal Target 7.1," Energies, MDPI, vol. 16(4), pages 1-42, February.
    7. Pal, Pikaso & Mukherjee, V., 2021. "Off-grid solar photovoltaic/hydrogen fuel cell system for renewable energy generation: An investigation based on techno-economic feasibility assessment for the application of end-user load demand in N," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Barun K. & Hoque, Najmul & Mandal, Soumya & Pal, Tapas Kumar & Raihan, Md Abu, 2017. "A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh," Energy, Elsevier, vol. 134(C), pages 775-788.
    2. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2017. "Optimisation of stand-alone hybrid energy systems supplemented by combustion-based prime movers," Applied Energy, Elsevier, vol. 196(C), pages 18-33.
    3. Askarzadeh, Alireza, 2017. "Distribution generation by photovoltaic and diesel generator systems: Energy management and size optimization by a new approach for a stand-alone application," Energy, Elsevier, vol. 122(C), pages 542-551.
    4. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    5. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    6. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    7. Das, Barun K. & Al-Abdeli, Yasir M. & Woolridge, Matthew, 2019. "Effects of battery technology and load scalability on stand-alone PV/ICE hybrid micro-grid system performance," Energy, Elsevier, vol. 168(C), pages 57-69.
    8. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    9. Rezzouk, H. & Mellit, A., 2015. "Feasibility study and sensitivity analysis of a stand-alone photovoltaic–diesel–battery hybrid energy system in the north of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1134-1150.
    10. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2014. "Hybrid renewable energy systems for off-grid electric power: Review of substantial issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 527-539.
    11. Ramli, Makbul A.M. & Hiendro, Ayong & Sedraoui, Khaled & Twaha, Ssennoga, 2015. "Optimal sizing of grid-connected photovoltaic energy system in Saudi Arabia," Renewable Energy, Elsevier, vol. 75(C), pages 489-495.
    12. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    13. Nadjemi, O. & Nacer, T. & Hamidat, A. & Salhi, H., 2017. "Optimal hybrid PV/wind energy system sizing: Application of cuckoo search algorithm for Algerian dairy farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1352-1365.
    14. Zhang, Debao & Liu, Junwei & Jiao, Shifei & Tian, Hao & Lou, Chengzhi & Zhou, Zhihua & Zhang, Ji & Wang, Chendong & Zuo, Jian, 2019. "Research on the configuration and operation effect of the hybrid solar-wind-battery power generation system based on NSGA-II," Energy, Elsevier, vol. 189(C).
    15. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    16. Salameh, Tareq & Ghenai, Chaouki & Merabet, Adel & Alkasrawi, Malek, 2020. "Techno-economical optimization of an integrated stand-alone hybrid solar PV tracking and diesel generator power system in Khorfakkan, United Arab Emirates," Energy, Elsevier, vol. 190(C).
    17. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    18. Akinyele, D.O. & Rayudu, R.K., 2016. "Community-based hybrid electricity supply system: A practical and comparative approach," Applied Energy, Elsevier, vol. 171(C), pages 608-628.
    19. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2017. "Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1332-1347.
    20. Rad, Mohammad Amin Vaziri & Ghasempour, Roghaye & Rahdan, Parisa & Mousavi, Soroush & Arastounia, Mehrdad, 2020. "Techno-economic analysis of a hybrid power system based on the cost-effective hydrogen production method for rural electrification, a case study in Iran," Energy, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3341-:d:347954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.