IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v78y2017icp1378-1389.html
   My bibliography  Save this article

Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review

Author

Listed:
  • Goel, Sonali
  • Sharma, Renu

Abstract

The energy demand across the globe has increased in many folds due to technological advancement, rapid growth in industries and increase in household energy demand. This led the engineers and planners to think and find the means to harvest the alternative energy sources other than the fossil fuel. Solar, wind, biomass, mini hydro are some of the resources used worldwide to generate energy as per the availability of resources. This paper presents a comparative performances of various stand alone solar photovoltaic(PV), grid connected PV and hybrid renewable energy system (HRES) studied across the globe. The standalone PV system is used to supply electricity to a small habitats/hamlets or to a single household. Hybrid energy system consists of two or more energy sources for generation of power for rural electrification in off grid locations and in grid connected PV systems, excess electricity produced is injected to the grid thereby generating additional income. The research works carried out by various researchers around the globe on renewable energy sources particularly for rural electrification is discussed in this paper. Besides this the utilisation of renewable electricity for Plug-in-Electric Vehicles (PEV) studied across the globe were also discussed.

Suggested Citation

  • Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
  • Handle: RePEc:eee:rensus:v:78:y:2017:i:c:p:1378-1389
    DOI: 10.1016/j.rser.2017.05.200
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117308365
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.200?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Setiawan, Ahmad Agus & Zhao, Yu & Nayar, Chem. V., 2009. "Design, economic analysis and environmental considerations of mini-grid hybrid power system with reverse osmosis desalination plant for remote areas," Renewable Energy, Elsevier, vol. 34(2), pages 374-383.
    2. Sen, Rohit & Bhattacharyya, Subhes C., 2014. "Off-grid electricity generation with renewable energy technologies in India: An application of HOMER," Renewable Energy, Elsevier, vol. 62(C), pages 388-398.
    3. Brent, Alan Colin & Rogers, David E., 2010. "Renewable rural electrification: Sustainability assessment of mini-hybrid off-grid technological systems in the African context," Renewable Energy, Elsevier, vol. 35(1), pages 257-265.
    4. Cust, J. & Singh, A. & Neuhoff, K., 2007. "Rural Electrification in India: Economic and Institutional aspects of Renewables," Cambridge Working Papers in Economics 0763, Faculty of Economics, University of Cambridge.
    5. Türkay, Belgin Emre & Telli, Ali Yasin, 2011. "Economic analysis of standalone and grid connected hybrid energy systems," Renewable Energy, Elsevier, vol. 36(7), pages 1931-1943.
    6. Chokmaviroj, Somchai & Wattanapong, Rakwichian & Suchart, Yammen, 2006. "Performance of a 500kWP grid connected photovoltaic system at Mae Hong Son Province, Thailand," Renewable Energy, Elsevier, vol. 31(1), pages 19-28.
    7. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2014. "Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong," Renewable Energy, Elsevier, vol. 69(C), pages 7-15.
    8. Silva Herran, Diego & Nakata, Toshihiko, 2012. "Design of decentralized energy systems for rural electrification in developing countries considering regional disparity," Applied Energy, Elsevier, vol. 91(1), pages 130-145.
    9. Hu, Xiaosong & Murgovski, Nikolce & Johannesson, Lars & Egardt, Bo, 2013. "Energy efficiency analysis of a series plug-in hybrid electric bus with different energy management strategies and battery sizes," Applied Energy, Elsevier, vol. 111(C), pages 1001-1009.
    10. Yamegueu, D. & Azoumah, Y. & Py, X. & Zongo, N., 2011. "Experimental study of electricity generation by Solar PV/diesel hybrid systems without battery storage for off-grid areas," Renewable Energy, Elsevier, vol. 36(6), pages 1780-1787.
    11. Byrne, John & Zhou, Aiming & Shen, Bo & Hughes, Kristen, 2007. "Evaluating the potential of small-scale renewable energy options to meet rural livelihoods needs: A GIS- and lifecycle cost-based assessment of Western China's options," Energy Policy, Elsevier, vol. 35(8), pages 4391-4401, August.
    12. Karekezi, Stephen & Kithyoma, Waeni, 2002. "Renewable energy strategies for rural Africa: is a PV-led renewable energy strategy the right approach for providing modern energy to the rural poor of sub-Saharan Africa?," Energy Policy, Elsevier, vol. 30(11-12), pages 1071-1086, September.
    13. Rehman, Shafiqur & Al-Hadhrami, Luai M., 2010. "Study of a solar PV–diesel–battery hybrid power system for a remotely located population near Rafha, Saudi Arabia," Energy, Elsevier, vol. 35(12), pages 4986-4995.
    14. Bhattacharya, S.C. & Jana, Chinmoy, 2009. "Renewable energy in India: Historical developments and prospects," Energy, Elsevier, vol. 34(8), pages 981-991.
    15. Bhandari, Binayak & Lee, Kyung-Tae & Lee, Caroline Sunyong & Song, Chul-Ki & Maskey, Ramesh K. & Ahn, Sung-Hoon, 2014. "A novel off-grid hybrid power system comprised of solar photovoltaic, wind, and hydro energy sources," Applied Energy, Elsevier, vol. 133(C), pages 236-242.
    16. Saheb-Koussa, D. & Haddadi, M. & Belhamel, M., 2009. "Economic and technical study of a hybrid system (wind-photovoltaic-diesel) for rural electrification in Algeria," Applied Energy, Elsevier, vol. 86(7-8), pages 1024-1030, July.
    17. Akella, A.K. & Sharma, M.P. & Saini, R.P., 2007. "Optimum utilization of renewable energy sources in a remote area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 894-908, June.
    18. Urmee, Tania & Harries, David & Schlapfer, August, 2009. "Issues related to rural electrification using renewable energy in developing countries of Asia and Pacific," Renewable Energy, Elsevier, vol. 34(2), pages 354-357.
    19. Chaurey, Akanksha & Kandpal, Tara Chandra, 2010. "Assessment and evaluation of PV based decentralized rural electrification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2266-2278, October.
    20. Eltawil, Mohamed A. & Zhao, Zhengming, 2010. "Grid-connected photovoltaic power systems: Technical and potential problems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 112-129, January.
    21. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    22. Mohammed, Y.S. & Mokhtar, A.S. & Bashir, N. & Saidur, R., 2013. "An overview of agricultural biomass for decentralized rural energy in Ghana," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 15-25.
    23. Ubertini, Stefano & Desideri, Umberto, 2003. "Performance estimation and experimental measurements of a photovoltaic roof," Renewable Energy, Elsevier, vol. 28(12), pages 1833-1850.
    24. Chakrabarti, Snigdha & Chakrabarti, Subhendu, 2002. "Rural electrification programme with solar energy in remote region-a case study in an island," Energy Policy, Elsevier, vol. 30(1), pages 33-42, January.
    25. Chel, Arvind & Tiwari, G.N., 2011. "A case study of a typical 2.32Â kWP stand-alone photovoltaic (SAPV) in composite climate of New Delhi (India)," Applied Energy, Elsevier, vol. 88(4), pages 1415-1426, April.
    26. Urban, Frauke & Benders, René M.J. & Moll, Henri C., 2009. "Energy for rural India," Applied Energy, Elsevier, vol. 86(Supplemen), pages 47-57, November.
    27. Sidrach-de-Cardona, M & Mora López, Ll, 1999. "Performance analysis of a grid-connected photovoltaic system," Energy, Elsevier, vol. 24(2), pages 93-102.
    28. Pereira, Marcio Giannini & Freitas, Marcos Aurélio Vasconcelos & da Silva, Neilton Fidelis, 2010. "Rural electrification and energy poverty: Empirical evidences from Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1229-1240, May.
    29. Ekren, Orhan & Ekren, Banu Y., 2010. "Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing," Applied Energy, Elsevier, vol. 87(2), pages 592-598, February.
    30. Azoumah, Y. & Yamegueu, D. & Ginies, P. & Coulibaly, Y. & Girard, P., 2011. "Sustainable electricity generation for rural and peri-urban populations of sub-Saharan Africa: The "flexy-energy" concept," Energy Policy, Elsevier, vol. 39(1), pages 131-141, January.
    31. Nakata, Toshihiko & Kubo, Kazuo & Lamont, Alan, 2005. "Design for renewable energy systems with application to rural areas in Japan," Energy Policy, Elsevier, vol. 33(2), pages 209-219, January.
    32. Bhandari, Amit K. & Jana, Chinmoy, 2010. "A comparative evaluation of household preferences for solar photovoltaic standalone and mini-grid system: An empirical study in a costal village of Indian Sundarban," Renewable Energy, Elsevier, vol. 35(12), pages 2835-2838.
    33. Bekele, Getachew & Palm, Björn, 2010. "Feasibility study for a standalone solar-wind-based hybrid energy system for application in Ethiopia," Applied Energy, Elsevier, vol. 87(2), pages 487-495, February.
    34. Díaz, P. & Peña, R. & Muñoz, J. & Arias, C.A. & Sandoval, D., 2011. "Field analysis of solar PV-based collective systems for rural electrification," Energy, Elsevier, vol. 36(5), pages 2509-2516.
    35. Yu, Huilong & Tarsitano, Davide & Hu, Xiaosong & Cheli, Federico, 2016. "Real time energy management strategy for a fast charging electric urban bus powered by hybrid energy storage system," Energy, Elsevier, vol. 112(C), pages 322-331.
    36. Deshmukh, M.K. & Deshmukh, S.S., 2008. "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 235-249, January.
    37. Mala, Kirti & Schläpfer, August & Pryor, Trevor, 2009. "Better or worse? The role of solar photovoltaic (PV) systems in sustainable development: Case studies of remote atoll communities in Kiribati," Renewable Energy, Elsevier, vol. 34(2), pages 358-361.
    38. Shaahid, S.M. & Elhadidy, M.A., 2008. "Economic analysis of hybrid photovoltaic-diesel-battery power systems for residential loads in hot regions--A step to clean future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 488-503, February.
    39. Schmid, Aloisio Leoni & Hoffmann, Carlos Augusto Amaral, 2004. "Replacing diesel by solar in the Amazon: short-term economic feasibility of PV-diesel hybrid systems," Energy Policy, Elsevier, vol. 32(7), pages 881-898, May.
    40. Alsema, E. A. & Nieuwlaar, E., 2000. "Energy viability of photovoltaic systems," Energy Policy, Elsevier, vol. 28(14), pages 999-1010, November.
    41. Sharma, Vikrant & Chandel, S.S., 2013. "Performance analysis of a 190 kWp grid interactive solar photovoltaic power plant in India," Energy, Elsevier, vol. 55(C), pages 476-485.
    42. Nema, Pragya & Nema, R.K. & Rangnekar, Saroj, 2009. "A current and future state of art development of hybrid energy system using wind and PV-solar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2096-2103, October.
    43. Mondol, Jayanta Deb & Yohanis, Yigzaw G. & Norton, Brian, 2007. "The impact of array inclination and orientation on the performance of a grid-connected photovoltaic system," Renewable Energy, Elsevier, vol. 32(1), pages 118-140.
    44. Asrari, Arash & Ghasemi, Abolfazl & Javidi, Mohammad Hossein, 2012. "Economic evaluation of hybrid renewable energy systems for rural electrification in Iran—A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3123-3130.
    45. Kanase-Patil, A.B. & Saini, R.P. & Sharma, M.P., 2010. "Integrated renewable energy systems for off grid rural electrification of remote area," Renewable Energy, Elsevier, vol. 35(6), pages 1342-1349.
    46. Akikur, R.K. & Saidur, R. & Ping, H.W. & Ullah, K.R., 2013. "Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 738-752.
    47. Olatomiwa, Lanre & Mekhilef, Saad & Huda, A.S.N. & Ohunakin, Olayinka S., 2015. "Economic evaluation of hybrid energy systems for rural electrification in six geo-political zones of Nigeria," Renewable Energy, Elsevier, vol. 83(C), pages 435-446.
    48. Cucumo, Mario & Rosa, Alessandro De & Ferraro, Vittorio & Kaliakatsos, Dimitrios & Marinelli, Valerio, 2006. "Performance analysis of a 3kW grid-connected photovoltaic plant," Renewable Energy, Elsevier, vol. 31(8), pages 1129-1138.
    49. Kaplani, E. & Kaplanis, S., 2012. "A stochastic simulation model for reliable PV system sizing providing for solar radiation fluctuations," Applied Energy, Elsevier, vol. 97(C), pages 970-981.
    50. Pietruszko, S. M. & Gradzki, M., 2003. "Performance of a grid connected small PV system in Poland," Applied Energy, Elsevier, vol. 74(1-2), pages 177-184, January.
    51. Rehman, S. & El-Amin, I.M. & Ahmad, F. & Shaahid, S.M. & Al-Shehri, A.M. & Bakhashwain, J.M. & Shash, A., 2007. "Feasibility study of hybrid retrofits to an isolated off-grid diesel power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(4), pages 635-653, May.
    52. Karakoulidis, K. & Mavridis, K. & Bandekas, D.V. & Adoniadis, P. & Potolias, C. & Vordos, N., 2011. "Techno-economic analysis of a stand-alone hybrid photovoltaic-diesel–battery-fuel cell power system," Renewable Energy, Elsevier, vol. 36(8), pages 2238-2244.
    53. Pillai, Indu R. & Banerjee, Rangan, 2009. "Renewable energy in India: Status and potential," Energy, Elsevier, vol. 34(8), pages 970-980.
    54. Wittkopf, Stephen & Valliappan, Selvam & Liu, Lingyun & Ang, Kian Seng & Cheng, Seng Chye Jonathan, 2012. "Analytical performance monitoring of a 142.5kWp grid-connected rooftop BIPV system in Singapore," Renewable Energy, Elsevier, vol. 47(C), pages 9-20.
    55. Borges Neto, M.R. & Carvalho, P.C.M. & Carioca, J.O.B. & Canafístula, F.J.F., 2010. "Biogas/photovoltaic hybrid power system for decentralized energy supply of rural areas," Energy Policy, Elsevier, vol. 38(8), pages 4497-4506, August.
    56. Wichert, B., 1997. "PV-diesel hybrid energy systems for remote area power generation -- A review of current practice and future developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 1(3), pages 209-228, September.
    57. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island," Applied Energy, Elsevier, vol. 121(C), pages 149-158.
    58. Ma, Tao & Yang, Hongxing & Lu, Lin, 2013. "Performance evaluation of a stand-alone photovoltaic system on an isolated island in Hong Kong," Applied Energy, Elsevier, vol. 112(C), pages 663-672.
    59. Leloux, Jonathan & Narvarte, Luis & Trebosc, David, 2012. "Review of the performance of residential PV systems in France," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1369-1376.
    60. Hafez, Omar & Bhattacharya, Kankar, 2012. "Optimal planning and design of a renewable energy based supply system for microgrids," Renewable Energy, Elsevier, vol. 45(C), pages 7-15.
    61. Obeng, George Yaw & Evers, Hans-Dieter, 2009. "Solar PV rural electrification and energy-poverty: A review and conceptual framework with reference to Ghana," MPRA Paper 17136, University Library of Munich, Germany.
    62. Borhanazad, H. & Mekhilef, S. & Saidur, R. & Boroumandjazi, G., 2013. "Potential application of renewable energy for rural electrification in Malaysia," Renewable Energy, Elsevier, vol. 59(C), pages 210-219.
    63. Pande, P.C. & Singh, A.K. & Ansari, S. & Vyas, S.K. & Dave, B.K., 2003. "Design development and testing of a solar PV pump based drip system for orchards," Renewable Energy, Elsevier, vol. 28(3), pages 385-396.
    64. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    65. Hu, Xiaosong & Zou, Yuan & Yang, Yalian, 2016. "Greener plug-in hybrid electric vehicles incorporating renewable energy and rapid system optimization," Energy, Elsevier, vol. 111(C), pages 971-980.
    66. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    67. Elhadidy, M.A. & Shaahid, S.M., 2000. "Parametric study of hybrid (wind + solar + diesel) power generating systems," Renewable Energy, Elsevier, vol. 21(2), pages 129-139.
    68. Elhadidy, M.A. & Shaahid, S.M., 1999. "Feasibility of hybrid (wind + solar) power systems for Dhahran, Saudi Arabia," Renewable Energy, Elsevier, vol. 16(1), pages 970-976.
    69. Bhandari, Ramchandra & Stadler, Ingo, 2011. "Electrification using solar photovoltaic systems in Nepal," Applied Energy, Elsevier, vol. 88(2), pages 458-465, February.
    70. Rohani, Golbarg & Nour, Mutasim, 2014. "Techno-economical analysis of stand-alone hybrid renewable power system for Ras Musherib in United Arab Emirates," Energy, Elsevier, vol. 64(C), pages 828-841.
    71. Gupta, Ajai & Saini, R.P. & Sharma, M.P., 2010. "Steady-state modelling of hybrid energy system for off grid electrification of cluster of villages," Renewable Energy, Elsevier, vol. 35(2), pages 520-535.
    72. Shaahid, S.M. & El-Amin, I., 2009. "Techno-economic evaluation of off-grid hybrid photovoltaic-diesel-battery power systems for rural electrification in Saudi Arabia--A way forward for sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 625-633, April.
    73. Kaldellis, J.K. & Spyropoulos, G.C. & Kavadias, K.A. & Koronaki, I.P., 2009. "Experimental validation of autonomous PV-based water pumping system optimum sizing," Renewable Energy, Elsevier, vol. 34(4), pages 1106-1113.
    74. Adeoti, O. & Oyewole, B.A. & Adegboyega, T.D., 2001. "Solar photovoltaic-based home electrification system for rural development in Nigeria: domestic load assessment," Renewable Energy, Elsevier, vol. 24(1), pages 155-161.
    75. Blum, Nicola U. & Sryantoro Wakeling, Ratri & Schmidt, Tobias S., 2013. "Rural electrification through village grids—Assessing the cost competitiveness of isolated renewable energy technologies in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 482-496.
    76. Rehman, Shafiqur & Mahbub Alam, Md. & Meyer, J.P. & Al-Hadhrami, Luai M., 2012. "Feasibility study of a wind–pv–diesel hybrid power system for a village," Renewable Energy, Elsevier, vol. 38(1), pages 258-268.
    77. Rahman, Md. Mizanur & Hasan, Mohammad Mahmodul & Paatero, Jukka V. & Lahdelma, Risto, 2014. "Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries," Renewable Energy, Elsevier, vol. 68(C), pages 35-45.
    78. Castellanos, J.G. & Walker, M. & Poggio, D. & Pourkashanian, M. & Nimmo, W., 2015. "Modelling an off-grid integrated renewable energy system for rural electrification in India using photovoltaics and anaerobic digestion," Renewable Energy, Elsevier, vol. 74(C), pages 390-398.
    79. Gomaa, S. & Seoud, A.K.Aboul & Kheiralla, H.N., 1995. "Design and analysis of photovoltaic and wind energy hybrid systems in Alexandria, Egypt," Renewable Energy, Elsevier, vol. 6(5), pages 643-647.
    80. Sinha, Chandra Shekhar & Kandpal, Tara Chandra, 1991. "Decentralized v grid electricity for rural India : The economic factors," Energy Policy, Elsevier, vol. 19(5), pages 441-448, June.
    81. Bajpai, Prabodh & Dash, Vaishalee, 2012. "Hybrid renewable energy systems for power generation in stand-alone applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2926-2939.
    82. Sinha, Sunanda & Chandel, S.S., 2014. "Review of software tools for hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 192-205.
    83. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H., 2009. "Grid-connected versus stand-alone energy systems for decentralized power--A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2041-2050, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    2. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    3. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    4. Das, Barun K. & Hoque, Najmul & Mandal, Soumya & Pal, Tapas Kumar & Raihan, Md Abu, 2017. "A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh," Energy, Elsevier, vol. 134(C), pages 775-788.
    5. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    6. Akikur, R.K. & Saidur, R. & Ping, H.W. & Ullah, K.R., 2013. "Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 738-752.
    7. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    8. Yilmaz, Saban & Dincer, Furkan, 2017. "Optimal design of hybrid PV-Diesel-Battery systems for isolated lands: A case study for Kilis, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 344-352.
    9. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    10. Haytham El-houari & Amine Allouhi & Shafiqur Rehman & Mahmut Sami Buker & Tarik Kousksou & Abdelmajid Jamil & Bouchta El Amrani, 2019. "Design, Simulation, and Economic Optimization of an Off-Grid Photovoltaic System for Rural Electrification," Energies, MDPI, vol. 12(24), pages 1-16, December.
    11. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    12. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    13. Tomar, Vivek & Tiwari, G.N., 2017. "Techno-economic evaluation of grid connected PV system for households with feed in tariff and time of day tariff regulation in New Delhi – A sustainable approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 822-835.
    14. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    15. Hosseinalizadeh, Ramin & Shakouri G, Hamed & Amalnick, Mohsen Sadegh & Taghipour, Peyman, 2016. "Economic sizing of a hybrid (PV–WT–FC) renewable energy system (HRES) for stand-alone usages by an optimization-simulation model: Case study of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 139-150.
    16. Chaurey, Akanksha & Kandpal, Tara Chandra, 2010. "Assessment and evaluation of PV based decentralized rural electrification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2266-2278, October.
    17. Javadi, F.S. & Rismanchi, B. & Sarraf, M. & Afshar, O. & Saidur, R. & Ping, H.W. & Rahim, N.A., 2013. "Global policy of rural electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 402-416.
    18. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    19. González, Arnau & Riba, Jordi-Roger & Rius, Antoni, 2016. "Combined heat and power design based on environmental and cost criteria," Energy, Elsevier, vol. 116(P1), pages 922-932.
    20. Olatomiwa, Lanre & Mekhilef, Saad & Huda, A.S.N. & Ohunakin, Olayinka S., 2015. "Economic evaluation of hybrid energy systems for rural electrification in six geo-political zones of Nigeria," Renewable Energy, Elsevier, vol. 83(C), pages 435-446.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:78:y:2017:i:c:p:1378-1389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.