IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v90y2021ics0966692320309844.html
   My bibliography  Save this article

Participatory visioning for building disruptive future scenarios for transport and land use planning

Author

Listed:
  • Soria-Lara, Julio A.
  • Ariza-Álvarez, Amor
  • Aguilera-Benavente, Francisco
  • Cascajo, Rocío
  • Arce-Ruiz, Rosa M.
  • López, Cristina
  • Gómez-Delgado, Montserrat

Abstract

Participatory visioning in transport scenario building can be particularly useful to anticipate and examine unexpected outcomes over long-term future timelines, providing broad legitimacy to today’s decision-making processes. However, the strategic value of participatory approaches is increasingly being contested due to the difficulty to operationalize non-linear thinking, resulting in long-term visions similar to business-as-usual projections. To address this challenge, we developed and implemented a novel participatory visioning approach based on using semi-structured interviews that incorporate two types of wild cards – low probability and high impact processes – as disruptive visioning triggers: imaginable and unimaginable processes. A group of experts evaluated the level of disruptive thinking in the generated future visions. The Henares Corridor in the Metropolitan Area of Madrid, Spain provided the empirical focus. The results present a total of seven 2050 visions: one desired common vision plus six wild card visions. Higher levels of disruptive thinking were mainly present in those future visions generated by unimaginable processes, as such processes initiate highly diverging participant future views. It was also noted that smaller and specific groups of participants can visualize 2050 futures more disruptively. Conclusions and reflections on the strengths and weakness of the presented approach are drawn.

Suggested Citation

  • Soria-Lara, Julio A. & Ariza-Álvarez, Amor & Aguilera-Benavente, Francisco & Cascajo, Rocío & Arce-Ruiz, Rosa M. & López, Cristina & Gómez-Delgado, Montserrat, 2021. "Participatory visioning for building disruptive future scenarios for transport and land use planning," Journal of Transport Geography, Elsevier, vol. 90(C).
  • Handle: RePEc:eee:jotrge:v:90:y:2021:i:c:s0966692320309844
    DOI: 10.1016/j.jtrangeo.2020.102907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692320309844
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2020.102907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hickman, Robin & Ashiru, Olu & Banister, David, 2011. "Transitions to low carbon transport futures: strategic conversations from London and Delhi," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1553-1562.
    2. Taleb, Nassim Nicholas, 2007. "Black Swans and the Domains of Statistics," The American Statistician, American Statistical Association, vol. 61, pages 198-200, August.
    3. Zimmermann, Martin & Darkow, Inga-Lena & von der Gracht, Heiko A., 2012. "Integrating Delphi and participatory backcasting in pursuit of trustworthiness — The case of electric mobility in Germany," Technological Forecasting and Social Change, Elsevier, vol. 79(9), pages 1605-1621.
    4. Lyons, Glenn & Davidson, Cody, 2016. "Guidance for transport planning and policymaking in the face of an uncertain future," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 104-116.
    5. Soria-Lara, Julio A. & Banister, David, 2017. "Participatory visioning in transport backcasting studies: Methodological lessons from Andalusia (Spain)," Journal of Transport Geography, Elsevier, vol. 58(C), pages 113-126.
    6. Soria-Lara, Julio A. & Banister, David, 2017. "Dynamic participation processes for policy packaging in transport backcasting studies," Transport Policy, Elsevier, vol. 58(C), pages 19-30.
    7. Melander, Lisa & Dubois, Anna & Hedvall, Klas & Lind, Frida, 2019. "Future goods transport in Sweden 2050: Using a Delphi-based scenario analysis," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 178-189.
    8. Tolley, Rodney & Lumsdon, Les & Bickerstaff, Karen, 2001. "The future of walking in Europe: a Delphi project to identify expert opinion on future walking scenarios," Transport Policy, Elsevier, vol. 8(4), pages 307-315, October.
    9. Miguel L. Navarro-Ligero & Julio A. Soria-Lara & Luis Miguel Valenzuela-Montes, 2019. "A Heuristic Approach for Exploring Uncertainties in Transport Planning Research," Planning Theory & Practice, Taylor & Francis Journals, vol. 20(4), pages 537-554, August.
    10. Soria-Lara, Julio A. & Banister, David, 2018. "Evaluating the impacts of transport backcasting scenarios with multi-criteria analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 26-37.
    11. von der Gracht, Heiko A. & Darkow, Inga-Lena, 2010. "Scenarios for the logistics services industry: A Delphi-based analysis for 2025," International Journal of Production Economics, Elsevier, vol. 127(1), pages 46-59, September.
    12. Mason, Keith J. & Alamdari, F., 2007. "EU network carriers, low cost carriers and consumer behaviour: A Delphi study of future trends," Journal of Air Transport Management, Elsevier, vol. 13(5), pages 299-310.
    13. Olsson, Linda & Hjalmarsson, Linnea & Wikström, Martina & Larsson, Mårten, 2015. "Bridging the implementation gap: Combining backcasting and policy analysis to study renewable energy in urban road transport," Transport Policy, Elsevier, vol. 37(C), pages 72-82.
    14. Banister, David & Hickman, Robin, 2013. "Transport futures: Thinking the unthinkable," Transport Policy, Elsevier, vol. 29(C), pages 283-293.
    15. Hickman, Robin & Banister, David, 2007. "Looking over the horizon: Transport and reduced CO2 emissions in the UK by 2030," Transport Policy, Elsevier, vol. 14(5), pages 377-387, September.
    16. Piecyk, Maja I. & McKinnon, Alan C., 2010. "Forecasting the carbon footprint of road freight transport in 2020," International Journal of Production Economics, Elsevier, vol. 128(1), pages 31-42, November.
    17. Schuckmann, Steffen W. & Gnatzy, Tobias & Darkow, Inga-Lena & von der Gracht, Heiko A., 2012. "Analysis of factors influencing the development of transport infrastructure until the year 2030 — A Delphi based scenario study," Technological Forecasting and Social Change, Elsevier, vol. 79(8), pages 1373-1387.
    18. Mattila, Tuomas & Antikainen, Riina, 2011. "Backcasting sustainable freight transport systems for Europe in 2050," Energy Policy, Elsevier, vol. 39(3), pages 1241-1248, March.
    19. Makridakis, Spyros & Taleb, Nassim, 2009. "Living in a world of low levels of predictability," International Journal of Forecasting, Elsevier, vol. 25(4), pages 840-844, October.
    20. Wright, George & Goodwin, Paul, 2009. "Decision making and planning under low levels of predictability: Enhancing the scenario method," International Journal of Forecasting, Elsevier, vol. 25(4), pages 813-825, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Jaehyung & Lee, Euntak & Yun, Jaewoong & Chung, Jin-Hyuk & Kim, Jinhee, 2021. "Latent heterogeneity in autonomous driving preferences and in-vehicle activities by travel distance," Journal of Transport Geography, Elsevier, vol. 94(C).
    2. Acheampong, Ransford A. & Legacy, Crystal & Kingston, Richard & Stone, John, 2023. "Imagining urban mobility futures in the era of autonomous vehicles—insights from participatory visioning and multi-criteria appraisal in the UK and Australia," Transport Policy, Elsevier, vol. 136(C), pages 193-208.
    3. Ariza-Álvarez, Amor & Soria-Lara, Julio A. & Arce-Ruiz, Rosa M. & López-Lambas, María Eugenia & Jimenez-Espada, Montaña, 2021. "Experimenting with scenario-building narratives to integrate land use and transport," Transport Policy, Elsevier, vol. 101(C), pages 57-70.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ariza-Álvarez, Amor & Soria-Lara, Julio A. & Arce-Ruiz, Rosa M. & López-Lambas, María Eugenia & Jimenez-Espada, Montaña, 2021. "Experimenting with scenario-building narratives to integrate land use and transport," Transport Policy, Elsevier, vol. 101(C), pages 57-70.
    2. Soria-Lara, Julio A. & Banister, David, 2017. "Dynamic participation processes for policy packaging in transport backcasting studies," Transport Policy, Elsevier, vol. 58(C), pages 19-30.
    3. Helena Sustar & Miloš N. Mladenović & Moshe Givoni, 2020. "The Landscape of Envisioning and Speculative Design Methods for Sustainable Mobility Futures," Sustainability, MDPI, vol. 12(6), pages 1-24, March.
    4. Soria-Lara, Julio A. & Banister, David, 2017. "Participatory visioning in transport backcasting studies: Methodological lessons from Andalusia (Spain)," Journal of Transport Geography, Elsevier, vol. 58(C), pages 113-126.
    5. Melander, Lisa & Dubois, Anna & Hedvall, Klas & Lind, Frida, 2019. "Future goods transport in Sweden 2050: Using a Delphi-based scenario analysis," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 178-189.
    6. Fritschy, Carolin & Spinler, Stefan, 2019. "The impact of autonomous trucks on business models in the automotive and logistics industry–a Delphi-based scenario study," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    7. Soria-Lara, Julio A. & Banister, David, 2018. "Evaluating the impacts of transport backcasting scenarios with multi-criteria analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 26-37.
    8. Varvara Nikulina & David Simon & Henrik Ny & Henrikke Baumann, 2019. "Context-Adapted Urban Planning for Rapid Transitioning of Personal Mobility towards Sustainability: A Systematic Literature Review," Sustainability, MDPI, vol. 11(4), pages 1-37, February.
    9. Li, Shunxi & Sui, Pang-Chieh & Xiao, Jinsheng & Chahine, Richard, 2019. "Policy formulation for highly automated vehicles: Emerging importance, research frontiers and insights," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 573-586.
    10. Spickermann, Alexander & Grienitz, Volker & von der Gracht, Heiko A., 2014. "Heading towards a multimodal city of the future?," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 201-221.
    11. Rosalie Camilleri & Maria Attard & Robin Hickman, 2024. "Participatory Policy Packaging for Transport Backcasting: A Pathway for Reducing CO 2 Emissions from Transport in Malta," Sustainability, MDPI, vol. 16(1), pages 1-19, January.
    12. Chen, Kaihua & Ren, Zhipeng & Mu, Shijun & Sun, Tara Qian & Mu, Rongping, 2020. "Integrating the Delphi survey into scenario planning for China's renewable energy development strategy towards 2030," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    13. Ülengin, Füsun & Işık, Mine & Ekici, Şule Önsel & Özaydın, Özay & Kabak, Özgür & Topçu, Y. İlker, 2018. "Policy developments for the reduction of climate change impacts by the transportation sector," Transport Policy, Elsevier, vol. 61(C), pages 36-50.
    14. Luca Staricco & Valentina Rappazzo & Jacopo Scudellari & Elisabetta Vitale Brovarone, 2019. "Toward Policies to Manage the Impacts of Autonomous Vehicles on the City: A Visioning Exercise," Sustainability, MDPI, vol. 11(19), pages 1-21, September.
    15. Kluge, Ulrike & Ringbeck, Jürgen & Spinler, Stefan, 2020. "Door-to-door travel in 2035 – A Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    16. Merfeld, Katrin & Wilhelms, Mark-Philipp & Henkel, Sven & Kreutzer, Karin, 2019. "Carsharing with shared autonomous vehicles: Uncovering drivers, barriers and future developments – A four-stage Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 66-81.
    17. Yusuke Kishita & Takuma Masuda & Hidenori Nakamura & Kazumasu Aoki, 2023. "Computer‐aided scenario design using participatory backcasting: A case study of sustainable vision creation in a Japanese city," Futures & Foresight Science, John Wiley & Sons, vol. 5(1), March.
    18. Can Bıyık, 2019. "Smart Cities in Turkey: Approaches, Advances and Applications with Greater Consideration for Future Urban Transport Development," Energies, MDPI, vol. 12(12), pages 1-33, June.
    19. Khrisydel Rhea M. Supapo & Lorafe Lozano & Ian Dominic F. Tabañag & Edward M. Querikiol, 2022. "A Backcasting Analysis toward a 100% Renewable Energy Transition by 2040 for Off-Grid Islands," Energies, MDPI, vol. 15(13), pages 1-19, June.
    20. Tiberius, Victor & Gojowy, Robin & Dabić, Marina, 2022. "Forecasting the future of robo advisory: A three-stage Delphi study on economic, technological, and societal implications," Technological Forecasting and Social Change, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:90:y:2021:i:c:s0966692320309844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.