IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5422-d430286.html
   My bibliography  Save this article

Grand Challenges in Central Europe: The Relationship of Food Security, Climate Change, and Energy Use

Author

Listed:
  • Domicián Máté

    (College of Business and Economics, University of Johannesburg, 2006 Johannesburg, Auckland Park, South Africa
    Faculty of Engineering, University of Debrecen, 4032 Debrecen, Hungary)

  • Mohammad Fazle Rabbi

    (Ihrig Károly Doctoral School, University of Debrecen, 4032 Debrecen, Hungary)

  • Adam Novotny

    (Faculty of Economics and Social Sciences, Eszterházy Károly University, 3300 Eger, Hungary
    Nord University Business School, 8026 Bodø, Norway)

  • Sándor Kovács

    (Faculty of Economics and Business Management, University of Debrecen, 4032 Debrecen, Hungary)

Abstract

Pursuing various sustainable development goals is posing new challenges for societies, policymakers, and researchers alike. This study implements an exploratory approach to address the complexity of food security and nuance its relationship with other grand challenges, such as energy use and climate change, in Central European countries. A multiple factor analysis (MFA) suggests that the three pillars of food security relate differently to climate change: food affordability and food accessibility positively correlate with climate change, while food quality has a negative association with temperature rise. However, if countries switched to renewable energy resources, all three pillars of food security could be achieved simultaneously. The study also underlines regional inequalities regarding grand challenges and emphasizes the need for innovative local solutions, i.e., advances in agriculture systems, educational programs, and the development of environmental technologies that consider social and economic issues.

Suggested Citation

  • Domicián Máté & Mohammad Fazle Rabbi & Adam Novotny & Sándor Kovács, 2020. "Grand Challenges in Central Europe: The Relationship of Food Security, Climate Change, and Energy Use," Energies, MDPI, vol. 13(20), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5422-:d:430286
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5422/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5422/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lechtenböhmer, Stefan & Nilsson, Lars J. & Åhman, Max & Schneider, Clemens, 2016. "Decarbonising the energy intensive basic materials industry through electrification – Implications for future EU electricity demand," Energy, Elsevier, vol. 115(P3), pages 1623-1631.
    2. Ramey, Garey & Ramey, Valerie A, 1995. "Cross-Country Evidence on the Link between Volatility and Growth," American Economic Review, American Economic Association, vol. 85(5), pages 1138-1151, December.
    3. Glenn Sheriff, 2005. "Efficient Waste? Why Farmers Over-Apply Nutrients and the Implications for Policy Design," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 27(4), pages 542-557.
    4. Mouratiadou, Ioanna & Biewald, Anne & Pehl, Michaja & Bonsch, Markus & Baumstark, Lavinia & Klein, David & Popp, Alexander & Luderer, Gunnar & Kriegler, Elmar, 2016. "The impact of climate change mitigation on water demand for energy and food: An integrated analysis based on the Shared Socioeconomic Pathways," Environmental Science & Policy, Elsevier, vol. 64(C), pages 48-58.
    5. József Popp & Judit Oláh & Mária Farkas Fekete & Zoltán Lakner & Domicián Máté, 2018. "The Relationship Between Prices of Various Metals, Oil and Scarcity," Energies, MDPI, vol. 11(9), pages 1-19, September.
    6. Lê, Sébastien & Josse, Julie & Husson, François, 2008. "FactoMineR: An R Package for Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i01).
    7. Dorward, Leejiah J., 2012. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? A comment," Food Policy, Elsevier, vol. 37(4), pages 463-466.
    8. Escofier, B. & Pages, J., 1994. "Multiple factor analysis (AFMULT package)," Computational Statistics & Data Analysis, Elsevier, vol. 18(1), pages 121-140, August.
    9. Timmer, C. Peter, 2000. "The macro dimensions of food security: economic growth, equitable distribution, and food price stability," Food Policy, Elsevier, vol. 25(3), pages 283-295, June.
    10. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    11. Birdsall, Nancy & Ross, David & Sabot, Richard, 1995. "Inequality and Growth Reconsidered: Lessons from East Asia," The World Bank Economic Review, World Bank, vol. 9(3), pages 477-508, September.
    12. Deolalikar, Anil B, 1988. "Nutrition and Labor Productivity in Agriculture: Estimates for Rural South India," The Review of Economics and Statistics, MIT Press, vol. 70(3), pages 406-413, August.
    13. Ross, D. & Sabot, R. & Birdsall, N., 1995. "Inequality and Growth Reconsidered," Center for Development Economics 142, Department of Economics, Williams College.
    14. Allen, Cameron & Metternicht, Graciela & Wiedmann, Thomas, 2016. "National pathways to the Sustainable Development Goals (SDGs): A comparative review of scenario modelling tools," Environmental Science & Policy, Elsevier, vol. 66(C), pages 199-207.
    15. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    16. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    17. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    18. Popp, J. & Lakner, Z. & Harangi-Rákos, M. & Fári, M., 2014. "The effect of bioenergy expansion: Food, energy, and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 559-578.
    19. Khan, Shahbaz & Hanjra, Munir A. & Mu, Jianxin, 2009. "Water management and crop production for food security in China: A review," Agricultural Water Management, Elsevier, vol. 96(3), pages 349-360, March.
    20. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    21. Muhammad Haseeb & Sebastian Kot & Hafezali Iqbal Hussain & Kittisak Jermsittiparsert, 2019. "Impact of Economic Growth, Environmental Pollution, and Energy Consumption on Health Expenditure and R&D Expenditure of ASEAN Countries," Energies, MDPI, vol. 12(19), pages 1-21, September.
    22. Saygin, D. & Gielen, D.J. & Draeck, M. & Worrell, E. & Patel, M.K., 2014. "Assessment of the technical and economic potentials of biomass use for the production of steam, chemicals and polymers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1153-1167.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenghua Wang & Banghui Zhang & Judit Oláh & Morshadul Hasan, 2021. "Factors Influencing the Quality of Life of Empty Nesters: Empirical Evidence from Southwest China," Sustainability, MDPI, vol. 13(5), pages 1-15, March.
    2. Donato Morea & Mohamad El Mehtedi & Pasquale Buonadonna, 2023. "Energy Context: Analysis of Selected Studies and Future Research Developments," Energies, MDPI, vol. 16(3), pages 1-6, February.
    3. Smith, Laurence G. & Westaway, Sally & Mullender, Samantha & Ghaley, Bhim Bahadur & Xu, Ying & Lehmann, Lisa Mølgaard & Pisanelli, Andrea & Russo, Giuseppe & Borek, Robert & Wawer, Rafał & Borzęcka, M, 2022. "Assessing the multidimensional elements of sustainability in European agroforestry systems," Agricultural Systems, Elsevier, vol. 197(C).
    4. Jarosław Solarz & Małgorzata Gawlik-Kobylińska & Witold Ostant & Paweł Maciejewski, 2022. "Trends in Energy Security Education with a Focus on Renewable and Nonrenewable Sources," Energies, MDPI, vol. 15(4), pages 1, February.
    5. Václav Voltr & Martin Hruška & Luboš Nobilis, 2021. "Complex Valuation of Energy from Agricultural Crops including Local Conditions," Energies, MDPI, vol. 14(5), pages 1-25, March.
    6. Jacek Buko & Jarosław Duda & Adam Makowski, 2021. "Food Production Security in Times of a Long-Term Energy Shortage Crisis: The Example of Poland," Energies, MDPI, vol. 14(16), pages 1-12, August.
    7. Sándor Kovács & Mohammad Fazle Rabbi & Domicián Máté, 2021. "Global Food Security, Economic and Health Risk Assessment of the COVID-19 Epidemic," Mathematics, MDPI, vol. 9(19), pages 1-16, September.
    8. Mohammad Fazle Rabbi & József Popp & Domicián Máté & Sándor Kovács, 2022. "Energy Security and Energy Transition to Achieve Carbon Neutrality," Energies, MDPI, vol. 15(21), pages 1-18, October.
    9. Jesús Rascón & Wildor Gosgot Angeles & Manuel Oliva-Cruz & Miguel Ángel Barrena Gurbillón, 2022. "Wind Characteristics and Wind Energy Potential in Andean Towns in Northern Peru between 2016 and 2020: A Case Study of the City of Chachapoyas," Sustainability, MDPI, vol. 14(10), pages 1-11, May.
    10. Domicián Máté & Adam Novotny & Daniel Francois Meyer, 2021. "The Impact of Sustainability Goals on Productivity Growth: The Moderating Role of Global Warming," IJERPH, MDPI, vol. 18(21), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moyer, Jonathan D. & Hedden, Steve, 2020. "Are we on the right path to achieve the sustainable development goals?," World Development, Elsevier, vol. 127(C).
    2. Kemp-Benedict, Eric & Carlsen, Henrik & Kartha, Sivan, 2019. "Large-scale scenarios as ‘boundary conditions’: A cross-impact balance simulated annealing (CIBSA) approach," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 55-63.
    3. Skea, Jim & van Diemen, Renée & Portugal-Pereira, Joana & Khourdajie, Alaa Al, 2021. "Outlooks, explorations and normative scenarios: Approaches to global energy futures compared," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    4. O'Neill, Brian, 2016. "The Shared Socioeconomic Pathways (SSPs) and their extension and use in impact, adaptation and vulnerability studies," Conference papers 332808, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. Qin, Pengcheng & Xu, Hongmei & Liu, Min & Xiao, Chan & Forrest, Kate E. & Samuelsen, Scott & Tarroja, Brian, 2020. "Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China," Applied Energy, Elsevier, vol. 279(C).
    6. Gabriel Bachner & Daniel Lincke & Jochen Hinkel, 2022. "The macroeconomic effects of adapting to high-end sea-level rise via protection and migration," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Vanessa J. Schweizer, 2020. "Reflections on cross-impact balances, a systematic method constructing global socio-technical scenarios for climate change research," Climatic Change, Springer, vol. 162(4), pages 1705-1722, October.
    8. Liu, Yinshan & Wang, Yuanfeng & Shi, Chengcheng & Zhang, Weijun & Luo, Wei & Wang, Jingjing & Li, Keping & Yeung, Ngai & Kite, Steve, 2022. "Assessing the CO2 reduction target gap and sustainability for bridges in China by 2040," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    9. He, Jianjian & Yang, Yi & Liao, Zhongju & Xu, Anqi & Fang, Kai, 2022. "Linking SDG 7 to assess the renewable energy footprint of nations by 2030," Applied Energy, Elsevier, vol. 317(C).
    10. Magalhães Filho, L.N.L. & Roebeling, P.C. & Costa, L.F.C. & de Lima, L.T., 2022. "Ecosystem services values at risk in the Atlantic coastal zone due to sea-level rise and socioeconomic development," Ecosystem Services, Elsevier, vol. 58(C).
    11. Miftakhova, Alena & Judd, Kenneth L. & Lontzek, Thomas S. & Schmedders, Karl, 2020. "Statistical approximation of high-dimensional climate models," Journal of Econometrics, Elsevier, vol. 214(1), pages 67-80.
    12. Angel Manuel Benitez Rodriguez & Ian Michael Trotter, 2019. "Climate change scenarios for Paraguayan power demand 2017–2050," Climatic Change, Springer, vol. 156(3), pages 425-445, October.
    13. Athanasios Thomas Vafeidis & Lena Reimann & Gerald Jan Ellen & Gunnel Goransson & Gerben Koers & Lisa Van Well & Bente Vollstedt & Maureen Tsakiris & Amy Oen, 2024. "Harmonizing the Development of Local Socioeconomic Scenarios: A Participatory Downscaling Approach Applied in Four European Case Studies," Sustainability, MDPI, vol. 16(6), pages 1-19, March.
    14. Hans van Meijl & Petr Havlik & Hermann Lotze-Campen & Elke Stehfest & Peter Witzke & Ignacio Perez Dominguez & Benjamin Bodirsky & Michiel van Dijk & Jonathan Doelman & Thomas Fellmann & Florian Humpe, 2017. "Challenges of Global Agriculture in a Climate Change Context by 2050 (AgCLIM50)," JRC Research Reports JRC106835, Joint Research Centre.
    15. Mier, Mathias & Siala, Kais & Govorukha, Kristina & Mayer, Philip, 2023. "Collaboration, decarbonization, and distributional effects," Applied Energy, Elsevier, vol. 341(C).
    16. Matsumoto, Ken׳ichi & Andriosopoulos, Kostas, 2016. "Energy security in East Asia under climate mitigation scenarios in the 21st century," Omega, Elsevier, vol. 59(PA), pages 60-71.
    17. Leibowicz, Benjamin D. & Krey, Volker & Grubler, Arnulf, 2016. "Representing spatial technology diffusion in an energy system optimization model," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 350-363.
    18. Manolis G. Grillakis & Evangelos G. Kapetanakis & Eleni Goumenaki, 2022. "Climate change implications for olive flowering in Crete, Greece: projections based on historical data," Climatic Change, Springer, vol. 175(1), pages 1-18, November.
    19. Céline Guivarch & Julie Rozenberg & Vanessa Schweizer, 2016. "The diversity of socio-economic pathways and CO2 emissions scenarios: Insights from the investigation of a scenarios database," Post-Print halshs-01292901, HAL.
    20. Samuel Sellers, 2020. "Cause of death variation under the shared socioeconomic pathways," Climatic Change, Springer, vol. 163(1), pages 559-577, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5422-:d:430286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.