IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v162y2020i4d10.1007_s10584-019-02615-2.html
   My bibliography  Save this article

Reflections on cross-impact balances, a systematic method constructing global socio-technical scenarios for climate change research

Author

Listed:
  • Vanessa J. Schweizer

    (University of Waterloo)

Abstract

Experiences with an algorithmic technique—cross-impact balances (CIB)—for exploring scenarios rather than relying solely upon expert intuitions are discussed. With CIB, two types of uncertainty for climate change research have been explored: (1) socio-technical uncertainties not represented explicitly in integrated assessment models (sometimes called “context scenarios”) and (2) sampling the space of possible futures to model. By applying CIB retrospectively and prospectively to two global socio-economic scenario exercises for climate change research (the Special Report on Emissions Scenarios and the Shared Socioeconomic Pathways), CIB proved instructive in two ways. First, CIB revealed system behaviors that were not obvious when social variables, such as quality of governance, were not captured explicitly by integrated assessment models. Second, CIB can algorithmically rank different plausible futures according to their self-consistency. These two capabilities have raised awareness about the limitations of accepting what may be “obvious” to model, as practices that focus solely on quantitative variables or rely upon intuitions for scenario analysis may result in detailed analyses of only a subset of important policy-relevant futures. From these experiences, systematic methods like CIB are recommended in conjunction with more detailed modeling to develop integrated socio-technical scenarios in energy-economy research.

Suggested Citation

  • Vanessa J. Schweizer, 2020. "Reflections on cross-impact balances, a systematic method constructing global socio-technical scenarios for climate change research," Climatic Change, Springer, vol. 162(4), pages 1705-1722, October.
  • Handle: RePEc:spr:climat:v:162:y:2020:i:4:d:10.1007_s10584-019-02615-2
    DOI: 10.1007/s10584-019-02615-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-019-02615-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-019-02615-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas Wilbanks & Kristie Ebi, 2014. "SSPs from an impact and adaptation perspective," Climatic Change, Springer, vol. 122(3), pages 473-479, February.
    2. B.C. O'Neill & T Carter & Kl Ebi & J. Edmonds & Stéphane Hallegatte & E. Kemp-Benedict & E. Kriegler & L. Mearns & R. Moss & K. Riahi & B. van Ruijven & D. van Vuuren, 2012. "Meeting Report of the Workshop on The Nature and Use of New Socioeconomic Pathways for Climate Change Research," CIRED Working Papers hal-00801931, HAL.
    3. Vögele, Stefan & Hansen, Patrick & Poganietz, Witold-Roger & Prehofer, Sigrid & Weimer-Jehle, Wolfgang, 2017. "Building scenarios for energy consumption of private households in Germany using a multi-level cross-impact balance approach," Energy, Elsevier, vol. 120(C), pages 937-946.
    4. Yamineva, Yulia, 2017. "Lessons from the Intergovernmental Panel on Climate Change on inclusiveness across geographies and stakeholders," Environmental Science & Policy, Elsevier, vol. 77(C), pages 244-251.
    5. Tietje, Olaf, 2005. "Identification of a small reliable and efficient set of consistent scenarios," European Journal of Operational Research, Elsevier, vol. 162(2), pages 418-432, April.
    6. Dale Rothman & Patricia Romero-Lankao & Vanessa Schweizer & Beth Bee, 2014. "Challenges to adaptation: a fundamental concept for the shared socio-economic pathways and beyond," Climatic Change, Springer, vol. 122(3), pages 495-507, February.
    7. Weimer-Jehle, Wolfgang & Buchgeister, Jens & Hauser, Wolfgang & Kosow, Hannah & Naegler, Tobias & Poganietz, Witold-Roger & Pregger, Thomas & Prehofer, Sigrid & von Recklinghausen, Andreas & Schippl, , 2016. "Context scenarios and their usage for the construction of socio-technical energy scenarios," Energy, Elsevier, vol. 111(C), pages 956-970.
    8. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    9. Céline Guivarch & Robert Lempert & Evelina Trutnevyte, 2017. "Scenario techniques for energy and environmental research: An overview of recent developments to broaden the capacity to deal with complexity and uncertainty," Post-Print halshs-01579281, HAL.
    10. Henrik Carlsen & Richard J. T. Klein & Per Wikman-Svahn, 2017. "Transparent scenario development," Nature Climate Change, Nature, vol. 7(9), pages 613-613, September.
    11. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    12. Vanessa Schweizer & Brian O’Neill, 2014. "Systematic construction of global socioeconomic pathways using internally consistent element combinations," Climatic Change, Springer, vol. 122(3), pages 431-445, February.
    13. Céline Guivarch & Julie Rozenberg & Vanessa Schweizer, 2016. "The diversity of socio-economic pathways and CO2 emissions scenarios: Insights from the investigation of a scenarios database," Post-Print halshs-01292901, HAL.
    14. Nebojsa Nakicenovic & Robert Lempert & Anthony Janetos, 2014. "A Framework for the Development of New Socio-economic Scenarios for Climate Change Research: Introductory Essay," Climatic Change, Springer, vol. 122(3), pages 351-361, February.
    15. Vera Heck & Dieter Gerten & Wolfgang Lucht & Alexander Popp, 2018. "Biomass-based negative emissions difficult to reconcile with planetary boundaries," Nature Climate Change, Nature, vol. 8(2), pages 151-155, February.
    16. Silke Beck & Martin Mahony, 2017. "The IPCC and the politics of anticipation," Nature Climate Change, Nature, vol. 7(5), pages 311-313, May.
    17. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    18. Martin Kowarsch & Jennifer Garard & Pauline Riousset & Dominic Lenzi & Marcel J. Dorsch & Brigitte Knopf & Jan-Albrecht Harrs & Ottmar Edenhofer, 2016. "Scientific assessments to facilitate deliberative policy learning," Palgrave Communications, Palgrave Macmillan, vol. 2(1), pages 1-20, December.
    19. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    20. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    21. Ritchey, Tom, 2018. "General morphological analysis as a basic scientific modelling method," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 81-91.
    22. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wolfgang Weimer-Jehle & Stefan Vögele & Wolfgang Hauser & Hannah Kosow & Witold-Roger Poganietz & Sigrid Prehofer, 2020. "Socio-technical energy scenarios: state-of-the-art and CIB-based approaches," Climatic Change, Springer, vol. 162(4), pages 1723-1741, October.
    2. Hannah Kosow & Sandra Wassermann & Stephan Bartke & Paul Goede & Detlef Grimski & Ines Imbert & Till Jenssen & Oliver Laukel & Matthias Proske & Jochen Protzer & Kim Philip Schumacher & Stefan Siedent, 2022. "Addressing Goal Conflicts: New Policy Mixes for Commercial Land Use Management," Land, MDPI, vol. 11(6), pages 1-26, May.
    3. Anna Garcia-Teruel & Yvonne Scholz & Wolfgang Weimer-Jehle & Sigrid Prehofer & Karl-Kiên Cao & Frieder Borggrefe, 2022. "Teaching Power-Sector Models Social and Political Awareness," Energies, MDPI, vol. 15(9), pages 1-24, April.
    4. Laura-Patricia Oviedo-Toral & Davi Ezequiel François & Witold-Roger Poganietz, 2021. "Challenges for Energy Transition in Poverty-Ridden Regions—The Case of Rural Mixteca, Mexico," Energies, MDPI, vol. 14(9), pages 1-22, May.
    5. Witold-Roger Poganietz & Wolfgang Weimer-Jehle, 2020. "Introduction to the special issue ‘Integrated scenario building in energy transition research’," Climatic Change, Springer, vol. 162(4), pages 1699-1704, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillaume Rohat & Johannes Flacke & Hy Dao & Martin Maarseveen, 2018. "Co-use of existing scenario sets to extend and quantify the shared socioeconomic pathways," Climatic Change, Springer, vol. 151(3), pages 619-636, December.
    2. O'Neill, Brian, 2016. "The Shared Socioeconomic Pathways (SSPs) and their extension and use in impact, adaptation and vulnerability studies," Conference papers 332808, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. Céline Guivarch & Julie Rozenberg & Vanessa Schweizer, 2016. "The diversity of socio-economic pathways and CO2 emissions scenarios: Insights from the investigation of a scenarios database," Post-Print halshs-01292901, HAL.
    4. Magalhães Filho, L.N.L. & Roebeling, P.C. & Costa, L.F.C. & de Lima, L.T., 2022. "Ecosystem services values at risk in the Atlantic coastal zone due to sea-level rise and socioeconomic development," Ecosystem Services, Elsevier, vol. 58(C).
    5. Kemp-Benedict, Eric & Carlsen, Henrik & Kartha, Sivan, 2019. "Large-scale scenarios as ‘boundary conditions’: A cross-impact balance simulated annealing (CIBSA) approach," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 55-63.
    6. Hans van Meijl & Petr Havlik & Hermann Lotze-Campen & Elke Stehfest & Peter Witzke & Ignacio Perez Dominguez & Benjamin Bodirsky & Michiel van Dijk & Jonathan Doelman & Thomas Fellmann & Florian Humpe, 2017. "Challenges of Global Agriculture in a Climate Change Context by 2050 (AgCLIM50)," JRC Research Reports JRC106835, Joint Research Centre.
    7. Mier, Mathias & Siala, Kais & Govorukha, Kristina & Mayer, Philip, 2023. "Collaboration, decarbonization, and distributional effects," Applied Energy, Elsevier, vol. 341(C).
    8. Thomas Pregger & Tobias Naegler & Wolfgang Weimer-Jehle & Sigrid Prehofer & Wolfgang Hauser, 2020. "Moving towards socio-technical scenarios of the German energy transition—lessons learned from integrated energy scenario building," Climatic Change, Springer, vol. 162(4), pages 1743-1762, October.
    9. Miftakhova, Alena & Judd, Kenneth L. & Lontzek, Thomas S. & Schmedders, Karl, 2020. "Statistical approximation of high-dimensional climate models," Journal of Econometrics, Elsevier, vol. 214(1), pages 67-80.
    10. Skea, Jim & van Diemen, Renée & Portugal-Pereira, Joana & Khourdajie, Alaa Al, 2021. "Outlooks, explorations and normative scenarios: Approaches to global energy futures compared," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    11. Angel Manuel Benitez Rodriguez & Ian Michael Trotter, 2019. "Climate change scenarios for Paraguayan power demand 2017–2050," Climatic Change, Springer, vol. 156(3), pages 425-445, October.
    12. Gabriele Standardi, 2023. "Exploring market-driven adaptation to climate change in a general equilibrium global trade model," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(2), pages 1-29, February.
    13. Trotter, Ian Michael & Féres, José Gustavo & Bolkesjø, Torjus Folsland & de Hollanda, Lavínia Rocha, 2015. "Simulating Brazilian Electricity Demand Under Climate Change Scenarios," Working Papers in Applied Economics 208689, Universidade Federal de Vicosa, Departamento de Economia Rural.
    14. Matsumoto, Ken׳ichi & Andriosopoulos, Kostas, 2016. "Energy security in East Asia under climate mitigation scenarios in the 21st century," Omega, Elsevier, vol. 59(PA), pages 60-71.
    15. Standardi, Gabriele, 2017. "Endogenous technical change linked to international mobility of primary factors in climate change scenarios: global welfare implications using the GTAP model," Conference papers 332920, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    16. Small, Mitchell J. & Wong-Parodi, Gabrielle & Kefford, Benjamin M. & Stringer, Martin & Schmeda-Lopez, Diego R. & Greig, Chris & Ballinger, Benjamin & Wilson, Stephen & Smart, Simon, 2019. "Generating linked technology-socioeconomic scenarios for emerging energy transitions," Applied Energy, Elsevier, vol. 239(C), pages 1402-1423.
    17. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    18. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.
    19. Roberto Roson & Richard Damania, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity: an Assessment of Alternative Scenarios," IEFE Working Papers 84, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    20. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:162:y:2020:i:4:d:10.1007_s10584-019-02615-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.