IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4317-d286335.html
   My bibliography  Save this article

Demand Price Elasticity of Residential Electricity Consumers with Zonal Tariff Settlement Based on Their Load Profiles

Author

Listed:
  • Jerzy Andruszkiewicz

    (Institute of Electric Power Engineering, Poznan University of Technology, 60-965 Poznan, Poland)

  • Józef Lorenc

    (Institute of Electric Power Engineering, Poznan University of Technology, 60-965 Poznan, Poland)

  • Agnieszka Weychan

    (Institute of Electric Power Engineering, Poznan University of Technology, 60-965 Poznan, Poland)

Abstract

The concept of price elasticity of demand has been widely used for the assessment of the consumers’ behavior in the electricity market. As the residential consumers represent a significant percentage of the total load, price elasticity of their demand may be used to design desirable demand side response programs in order to manage peak load in a power system. The method presented in this study proposes an alternative approach towards price elasticity determination for zonal tariff users, based on comparisons of load profiles of consumers settled according to flat and time-of-use electricity tariffs. A detailed explanation of the proposed method is presented, followed by a case-study of price elasticity determination for residential electricity consumers in Poland. The forecasted values of price elasticity of demand for the Polish households using time-of-use (TOU) tariff vary between −1.7 and −2.3, depending on the consumers’ annual electricity consumption. Moreover, an efficiency study of residential zonal tariff is performed to assess the operation of currently applicable electricity tariffs. Presented analysis is based on load profiles published by Distribution System Operators and statistical data, but the method can be applied to the real-life measurements from the smart metering systems as well when such systems are accessible for residential consumers.

Suggested Citation

  • Jerzy Andruszkiewicz & Józef Lorenc & Agnieszka Weychan, 2019. "Demand Price Elasticity of Residential Electricity Consumers with Zonal Tariff Settlement Based on Their Load Profiles," Energies, MDPI, vol. 12(22), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4317-:d:286335
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4317/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4317/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Labandeira, Xavier & Labeaga, José M. & López-Otero, Xiral, 2017. "A meta-analysis on the price elasticity of energy demand," Energy Policy, Elsevier, vol. 102(C), pages 549-568.
    2. Alberini, Anna & Filippini, Massimo, 2011. "Response of residential electricity demand to price: The effect of measurement error," Energy Economics, Elsevier, vol. 33(5), pages 889-895, September.
    3. Klaassen, E.A.M. & Kobus, C.B.A. & Frunt, J. & Slootweg, J.G., 2016. "Responsiveness of residential electricity demand to dynamic tariffs: Experiences from a large field test in the Netherlands," Applied Energy, Elsevier, vol. 183(C), pages 1065-1074.
    4. Silva, Susana & Soares, Isabel & Pinho, Carlos, 2018. "Electricity residential demand elasticities: Urban versus rural areas in Portugal," Energy, Elsevier, vol. 144(C), pages 627-632.
    5. Fan, Shu & Hyndman, Rob J., 2011. "The price elasticity of electricity demand in South Australia," Energy Policy, Elsevier, vol. 39(6), pages 3709-3719, June.
    6. Rafik Nafkha & Krzysztof Gajowniczek & Tomasz Ząbkowski, 2018. "Do Customers Choose Proper Tariff? Empirical Analysis Based on Polish Data Using Unsupervised Techniques," Energies, MDPI, vol. 11(3), pages 1-17, February.
    7. Woo, C.K. & Liu, Y. & Zarnikau, J. & Shiu, A. & Luo, X. & Kahrl, F., 2018. "Price elasticities of retail energy demands in the United States: New evidence from a panel of monthly data for 2001–2016," Applied Energy, Elsevier, vol. 222(C), pages 460-474.
    8. Paul J. Burke and Ashani Abayasekara, 2018. "The Price Elasticity of Electricity Demand in the United States: A Three-Dimensional Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    9. Arthur, Maria de Fátima S.R. & Bond, Craig A. & Willson, Bryan, 2012. "Estimation of elasticities for domestic energy demand in Mozambique," Energy Economics, Elsevier, vol. 34(2), pages 398-409.
    10. Chindarkar, Namrata & Goyal, Nihit, 2019. "One price doesn't fit all: An examination of heterogeneity in price elasticity of residential electricity in India," Energy Economics, Elsevier, vol. 81(C), pages 765-778.
    11. Vallés, Mercedes & Bello, Antonio & Reneses, Javier & Frías, Pablo, 2018. "Probabilistic characterization of electricity consumer responsiveness to economic incentives," Applied Energy, Elsevier, vol. 216(C), pages 296-310.
    12. Espey, James A. & Espey, Molly, 2004. "Turning on the Lights: A Meta-Analysis of Residential Electricity Demand Elasticities," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 36(1), pages 65-81, April.
    13. Saha, Debalina & Bhattacharya, Rabindra N., 2018. "An analysis of elasticity of electricity demand in West Bengal, India: Some policy lessons learnt," Energy Policy, Elsevier, vol. 114(C), pages 591-597.
    14. Chassin, David P. & Rondeau, Daniel, 2016. "Aggregate modeling of fast-acting demand response and control under real-time pricing," Applied Energy, Elsevier, vol. 181(C), pages 288-298.
    15. Guo, Peiyang & Lam, Jacqueline C.K. & Li, Victor O.K., 2019. "Drivers of domestic electricity users’ price responsiveness: A novel machine learning approach," Applied Energy, Elsevier, vol. 235(C), pages 900-913.
    16. Uri, Noel D., 1981. "Estimation of demand elasticities: A reflection on the issues," Applied Energy, Elsevier, vol. 9(4), pages 243-256, December.
    17. Youn, Hyungho & Jin, Hyun Joung, 2016. "The effects of progressive pricing on household electricity use," Journal of Policy Modeling, Elsevier, vol. 38(6), pages 1078-1088.
    18. Kwon, Sanguk & Cho, Seong-Hoon & Roberts, Roland K. & Kim, Hyun Jae & Park, KiHyun & Edward Yu, Tun-Hsiang, 2016. "Short-run and the long-run effects of electricity price on electricity intensity across regions," Applied Energy, Elsevier, vol. 172(C), pages 372-382.
    19. Matar, Walid, 2018. "Households' response to changes in electricity pricing schemes: Bridging microeconomic and engineering principles," Energy Economics, Elsevier, vol. 75(C), pages 300-308.
    20. Gautam, Tej K. & Paudel, Krishna P., 2018. "Estimating sectoral demands for electricity using the pooled mean group method," Applied Energy, Elsevier, vol. 231(C), pages 54-67.
    21. Labandeira, Xavier & Labeaga, José M. & López-Otero, Xiral, 2012. "Estimation of elasticity price of electricity with incomplete information," Energy Economics, Elsevier, vol. 34(3), pages 627-633.
    22. Uri, Noel D., 1981. "Estimation of demand elasticities: A reflection on the issues," Socio-Economic Planning Sciences, Elsevier, vol. 15(3), pages 101-107.
    23. Boogen, Nina & Datta, Souvik & Filippini, Massimo, 2017. "Demand-side management by electric utilities in Switzerland: Analyzing its impact on residential electricity demand," Energy Economics, Elsevier, vol. 64(C), pages 402-414.
    24. Filippini, Massimo, 1995. "Swiss residential demand for electricity by time-of-use," Resource and Energy Economics, Elsevier, vol. 17(3), pages 281-290, November.
    25. Lijesen, Mark G., 2007. "The real-time price elasticity of electricity," Energy Economics, Elsevier, vol. 29(2), pages 249-258, March.
    26. Nina Boogen & Souvik Datta & Massimo Filippini, 2014. "Going beyond tradition: Estimating residential electricity demand using an appliance index and energy services," CER-ETH Economics working paper series 14/200, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    27. Boonekamp, Piet G.M., 2007. "Price elasticities, policy measures and actual developments in household energy consumption - A bottom up analysis for the Netherlands," Energy Economics, Elsevier, vol. 29(2), pages 133-157, March.
    28. Schulte, Isabella & Heindl, Peter, 2017. "Price and income elasticities of residential energy demand in Germany," Energy Policy, Elsevier, vol. 102(C), pages 512-528.
    29. Mostafa Baladi, S. & Herriges, Joseph A. & Sweeney, Thomas J., 1998. "Residential response to voluntary time-of-use electricity rates," Resource and Energy Economics, Elsevier, vol. 20(3), pages 225-244, September.
    30. Yin, Rongxin & Kara, Emre C. & Li, Yaping & DeForest, Nicholas & Wang, Ke & Yong, Taiyou & Stadler, Michael, 2016. "Quantifying flexibility of commercial and residential loads for demand response using setpoint changes," Applied Energy, Elsevier, vol. 177(C), pages 149-164.
    31. Frank A. Wolak, 2011. "Do Residential Customers Respond to Hourly Prices? Evidence from a Dynamic Pricing Experiment," American Economic Review, American Economic Association, vol. 101(3), pages 83-87, May.
    32. Campbell, Alrick, 2018. "Price and income elasticities of electricity demand: Evidence from Jamaica," Energy Economics, Elsevier, vol. 69(C), pages 19-32.
    33. Guan Wang & Zhongfu Tan & Hongyu Lin & Qingkun Tan & Shenbo Yang & Liwei Ju & Zhongrui Ren, 2019. "Multi-Level Market Transaction Optimization Model for Electricity Sales Companies with Energy Storage Plant," Energies, MDPI, vol. 12(1), pages 1-14, January.
    34. Woo, C.K. & Li, R. & Shiu, A. & Horowitz, I., 2013. "Residential winter kWh responsiveness under optional time-varying pricing in British Columbia," Applied Energy, Elsevier, vol. 108(C), pages 288-297.
    35. Shaik, Saleem & Yeboah, Osei-Agyeman, 2018. "Does climate influence energy demand? A regional analysis," Applied Energy, Elsevier, vol. 212(C), pages 691-703.
    36. Pereira Uhr, Daniel de Abreu & Squarize Chagas, André Luis & Ziero Uhr, Júlia Gallego, 2019. "Estimation of elasticities for electricity demand in Brazilian households and policy implications," Energy Policy, Elsevier, vol. 129(C), pages 69-79.
    37. Muhammad Babar & Jakub Grela & Andrzej Ożadowicz & Phuong H. Nguyen & Zbigniew Hanzelka & I. G. Kamphuis, 2018. "Energy Flexometer: Transactive Energy-Based Internet of Things Technology," Energies, MDPI, vol. 11(3), pages 1-20, March.
    38. Aalami, H.A. & Moghaddam, M. Parsa & Yousefi, G.R., 2010. "Demand response modeling considering Interruptible/Curtailable loads and capacity market programs," Applied Energy, Elsevier, vol. 87(1), pages 243-250, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pereira, Diogo Santos & Marques, António Cardoso, 2020. "How should price-responsive electricity tariffs evolve? An analysis of the German net demand case," Utilities Policy, Elsevier, vol. 66(C).
    2. Trine Krogh Boomsma & Salvador Pineda & Ditte Mølgård Heide-Jørgensen, 2022. "The spot and balancing markets for electricity: open- and closed-loop equilibrium models," Computational Management Science, Springer, vol. 19(2), pages 309-346, June.
    3. Kim, Jihyo & Lee, Soomin & Jang, Heesun, 2022. "Lessons from residential electricity demand analysis on the time of use pricing experiment in South Korea," Energy Economics, Elsevier, vol. 113(C).
    4. Devkota, Laxmi P. & Bhattarai, Utsav & Khatri, Pawan & Marahatta, Suresh & Shrestha, Dibesh, 2022. "Resilience of hydropower plants to flow variation through the concept of flow elasticity of power: Theoretical development," Renewable Energy, Elsevier, vol. 184(C), pages 920-932.
    5. Javier Bueno & Desiderio Romero-Jordán & Pablo del Río, 2020. "Analysing the Drivers of Electricity Demand in Spain after the Economic Crisis," Energies, MDPI, vol. 13(20), pages 1-18, October.
    6. Mohtar Rasyid & Anita Kristina, 2021. "Estimation of Demand System for Household Energy Consumption: Empirical Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 289-295.
    7. Artur Łukaszewski & Łukasz Nogal & Sylwester Robak, 2020. "Weight Calculation Alternative Methods in Prime’s Algorithm Dedicated for Power System Restoration Strategies," Energies, MDPI, vol. 13(22), pages 1-20, November.
    8. Sebastian Schreck & Robin Sudhoff & Sebastian Thiem & Stefan Niessen, 2022. "On the Importance of Grid Tariff Designs in Local Energy Markets," Energies, MDPI, vol. 15(17), pages 1-25, August.
    9. Bekithemba Qeqe & Forget Kapingura & Bahle Mgxekwa, 2022. "The Relationship between Electricity Prices and Household Welfare in South Africa," Energies, MDPI, vol. 15(20), pages 1-15, October.
    10. Eduardo J. Salazar & Mauro Jurado & Mauricio E. Samper, 2023. "Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
    11. Jerzy Andruszkiewicz & Józef Lorenc & Agnieszka Weychan, 2021. "Price-Based Demand Side Response Programs and Their Effectiveness on the Example of TOU Electricity Tariff for Residential Consumers," Energies, MDPI, vol. 14(2), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Bueno & Desiderio Romero-Jordán & Pablo del Río, 2020. "Analysing the Drivers of Electricity Demand in Spain after the Economic Crisis," Energies, MDPI, vol. 13(20), pages 1-18, October.
    2. Andruszkiewicz, Jerzy & Lorenc, Józef & Weychan, Agnieszka, 2020. "Seasonal variability of price elasticity of demand of households using zonal tariffs and its impact on hourly load of the power system," Energy, Elsevier, vol. 196(C).
    3. Gautam, Tej K. & Paudel, Krishna P., 2018. "Estimating sectoral demands for electricity using the pooled mean group method," Applied Energy, Elsevier, vol. 231(C), pages 54-67.
    4. Nnaemeka Vincent Emodi & Taha Chaiechi & ABM Rabiul Alam Beg, 2018. "The impact of climate change on electricity demand in Australia," Energy & Environment, , vol. 29(7), pages 1263-1297, November.
    5. Csereklyei, Zsuzsanna, 2020. "Price and income elasticities of residential and industrial electricity demand in the European Union," Energy Policy, Elsevier, vol. 137(C).
    6. Jerzy Andruszkiewicz & Józef Lorenc & Agnieszka Weychan, 2021. "Price-Based Demand Side Response Programs and Their Effectiveness on the Example of TOU Electricity Tariff for Residential Consumers," Energies, MDPI, vol. 14(2), pages 1-21, January.
    7. Li, Raymond & Woo, Chi-Keung & Cox, Kevin, 2021. "How price-responsive is residential retail electricity demand in the US?," Energy, Elsevier, vol. 232(C).
    8. Farrell, Niall, 2021. "The increasing cost of ignoring Coase: Inefficient electricity tariffs, welfare loss and welfare-reducing technological change," Energy Economics, Elsevier, vol. 97(C).
    9. Woo, C.K. & Liu, Y. & Zarnikau, J. & Shiu, A. & Luo, X. & Kahrl, F., 2018. "Price elasticities of retail energy demands in the United States: New evidence from a panel of monthly data for 2001–2016," Applied Energy, Elsevier, vol. 222(C), pages 460-474.
    10. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    11. Winter, Simon & Schlesewsky, Lisa, 2019. "The German feed-in tariff revisited - an empirical investigation on its distributional effects," Energy Policy, Elsevier, vol. 132(C), pages 344-356.
    12. Favero, Filippo & Grossi, Luigi, 2023. "Analysis of individual natural gas consumption and price elasticity: Evidence from billing data in Italy," Energy Economics, Elsevier, vol. 118(C).
    13. Ghaith, Ahmad F. & Epplin, Francis M., 2017. "Consequences of a carbon tax on household electricity use and cost, carbon emissions, and economics of household solar and wind," Energy Economics, Elsevier, vol. 67(C), pages 159-168.
    14. Cao, K.H. & Qi, H.S. & Li, R. & Woo, C.K. & Tishler, A. & Zarnikau, J., 2023. "An experiment in own-price elasticity estimation for non-residential electricity demand in the U.S," Utilities Policy, Elsevier, vol. 81(C).
    15. Ciarreta, Aitor & Espinosa, Maria Paz & Pizarro-Irizar, Cristina, 2023. "Pricing policies for efficient demand side management in liberalized electricity markets," Economic Modelling, Elsevier, vol. 121(C).
    16. Lin, Boqiang & Wang, Yao, 2020. "Analyzing the elasticity and subsidy to reform the residential electricity tariffs in China," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 189-206.
    17. Barrientos, Jorge & Velilla, Esteban & Tobón Orozco, David & Villada, Fernando & López Lezama, Jesús M., 2018. "On the estimation of the price elasticity of electricity demand in the manufacturing industry of Colombia," Revista Lecturas de Economía, Universidad de Antioquia, CIE, issue 88, pages 155-182, January.
    18. Carlos Enrique Carrasco-Gutierrez & Philipp Ehrl, 2023. "Regional Estimates of Residential Electricity Demand in Brazil," International Journal of Energy Economics and Policy, Econjournals, vol. 13(1), pages 465-476, January.
    19. Derya Eryilmaz, Timothy M. Smith, and Frances R. Homans, 2017. "Price Responsiveness in Electricity Markets: Implications for Demand Response in the Midwest," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    20. Pereira Uhr, Daniel de Abreu & Squarize Chagas, André Luis & Ziero Uhr, Júlia Gallego, 2019. "Estimation of elasticities for electricity demand in Brazilian households and policy implications," Energy Policy, Elsevier, vol. 129(C), pages 69-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4317-:d:286335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.