IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p514-d133773.html
   My bibliography  Save this article

Do Customers Choose Proper Tariff? Empirical Analysis Based on Polish Data Using Unsupervised Techniques

Author

Listed:
  • Rafik Nafkha

    (Department of Informatics, Faculty of Applied Informatics and Mathematics, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-787 Warsaw, Poland)

  • Krzysztof Gajowniczek

    (Department of Informatics, Faculty of Applied Informatics and Mathematics, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-787 Warsaw, Poland)

  • Tomasz Ząbkowski

    (Department of Informatics, Faculty of Applied Informatics and Mathematics, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-787 Warsaw, Poland)

Abstract

Individual electricity customers that are connected to low voltage network in Poland are usually assigned to the most common G11 tariff group with flat prices for the whole year, no matter the usage volume. Given the diversity of customers’ behavior inside the same specific group, we aim to propose an approach to assign the customers based on some objective factors rather than subjective fixed assignment. With the smart metering data and statistical methods for clustering we can explore and recommend each customer the most suitable tariff to benefit from lower prices thus generate the savings. Further, the paper applies hierarchical, k-means and Kohonen approaches to assign the customers to the proper tariff, assuming that the customer can gain the biggest expenses reduction from the tariff switch. The analysis was conducted based on the Polish dataset with an hourly energy readings among 197 entities.

Suggested Citation

  • Rafik Nafkha & Krzysztof Gajowniczek & Tomasz Ząbkowski, 2018. "Do Customers Choose Proper Tariff? Empirical Analysis Based on Polish Data Using Unsupervised Techniques," Energies, MDPI, vol. 11(3), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:514-:d:133773
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/514/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/514/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ponta, Linda & Raberto, Marco & Teglio, Andrea & Cincotti, Silvano, 2018. "An Agent-based Stock-flow Consistent Model of the Sustainable Transition in the Energy Sector," Ecological Economics, Elsevier, vol. 145(C), pages 274-300.
    2. Al-Wakeel, Ali & Wu, Jianzhong & Jenkins, Nick, 2017. "k-means based load estimation of domestic smart meter measurements," Applied Energy, Elsevier, vol. 194(C), pages 333-342.
    3. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    4. Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," Energy Policy, Elsevier, vol. 72(C), pages 164-174.
    5. McLoughlin, Fintan & Duffy, Aidan & Conlon, Michael, 2015. "A clustering approach to domestic electricity load profile characterisation using smart metering data," Applied Energy, Elsevier, vol. 141(C), pages 190-199.
    6. Beckel, Christian & Sadamori, Leyna & Staake, Thorsten & Santini, Silvia, 2014. "Revealing household characteristics from smart meter data," Energy, Elsevier, vol. 78(C), pages 397-410.
    7. Allegra De Filippo & Michele Lombardi & Michela Milano, 2017. "User-Aware Electricity Price Optimization for the Competitive Market," Energies, MDPI, vol. 10(9), pages 1-23, September.
    8. Rhodes, Joshua D. & Cole, Wesley J. & Upshaw, Charles R. & Edgar, Thomas F. & Webber, Michael E., 2014. "Clustering analysis of residential electricity demand profiles," Applied Energy, Elsevier, vol. 135(C), pages 461-471.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Ząbkowski & Krzysztof Gajowniczek & Grzegorz Matejko & Jacek Brożyna & Grzegorz Mentel & Małgorzata Charytanowicz & Jolanta Jarnicka & Anna Olwert & Weronika Radziszewska, 2023. "Changing Electricity Tariff—An Empirical Analysis Based on Commercial Customers’ Data from Poland," Energies, MDPI, vol. 16(19), pages 1-17, September.
    2. Michał Gostkowski & Tomasz Rokicki & Luiza Ochnio & Grzegorz Koszela & Kamil Wojtczuk & Marcin Ratajczak & Hubert Szczepaniuk & Piotr Bórawski & Aneta Bełdycka-Bórawska, 2021. "Clustering Analysis of Energy Consumption in the Countries of the Visegrad Group," Energies, MDPI, vol. 14(18), pages 1-25, September.
    3. Jerzy Andruszkiewicz & Józef Lorenc & Agnieszka Weychan, 2019. "Demand Price Elasticity of Residential Electricity Consumers with Zonal Tariff Settlement Based on Their Load Profiles," Energies, MDPI, vol. 12(22), pages 1-22, November.
    4. Francisco Martínez-Álvarez & Alicia Troncoso & José C. Riquelme, 2018. "Data Science and Big Data in Energy Forecasting," Energies, MDPI, vol. 11(11), pages 1-2, November.
    5. Rongheng Lin & Budan Wu & Yun Su, 2018. "An Adaptive Weighted Pearson Similarity Measurement Method for Load Curve Clustering," Energies, MDPI, vol. 11(9), pages 1-17, September.
    6. Gołębiowska, Bernadeta & Bartczak, Anna & Budziński, Wiktor, 2021. "Impact of social comparison on preferences for Demand Side Management in Poland," Energy Policy, Elsevier, vol. 149(C).
    7. Rafik Nafkha & Tomasz Ząbkowski & Krzysztof Gajowniczek, 2021. "Deep Learning-Based Approaches to Optimize the Electricity Contract Capacity Problem for Commercial Customers," Energies, MDPI, vol. 14(8), pages 1-17, April.
    8. Krzysztof Gajowniczek & Marcin Bator & Tomasz Ząbkowski & Arkadiusz Orłowski & Chu Kiong Loo, 2020. "Simulation Study on the Electricity Data Streams Time Series Clustering," Energies, MDPI, vol. 13(4), pages 1-25, February.
    9. Bernadeta Gołębiowska & Anna Bartczak & Wiktor Budziński, 2019. "Impact of social comparison on DSM in Poland," Working Papers 2019-10, Faculty of Economic Sciences, University of Warsaw.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rongheng Lin & Budan Wu & Yun Su, 2018. "An Adaptive Weighted Pearson Similarity Measurement Method for Load Curve Clustering," Energies, MDPI, vol. 11(9), pages 1-17, September.
    2. Russo, Marianna & Bertsch, Valentin, 2020. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Energy Economics, Elsevier, vol. 92(C).
    3. Jieyi Kang & David Reiner, 2021. "Machine Learning on residential electricity consumption: Which households are more responsive to weather?," Working Papers EPRG2113, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    4. Jacqueline Nicole Adams & Zsófia Deme Bélafi & Miklós Horváth & János Balázs Kocsis & Tamás Csoknyai, 2021. "How Smart Meter Data Analysis Can Support Understanding the Impact of Occupant Behavior on Building Energy Performance: A Comprehensive Review," Energies, MDPI, vol. 14(9), pages 1-23, April.
    5. Wei Dong & Qiang Yang & Xinli Fang, 2018. "Multi-Step Ahead Wind Power Generation Prediction Based on Hybrid Machine Learning Techniques," Energies, MDPI, vol. 11(8), pages 1-19, July.
    6. Gouveia, João Pedro & Seixas, Júlia & Mestre, Ana, 2017. "Daily electricity consumption profiles from smart meters - Proxies of behavior for space heating and cooling," Energy, Elsevier, vol. 141(C), pages 108-122.
    7. Satre-Meloy, Aven & Diakonova, Marina & Grünewald, Philipp, 2020. "Cluster analysis and prediction of residential peak demand profiles using occupant activity data," Applied Energy, Elsevier, vol. 260(C).
    8. Roberts, Mike B. & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2019. "Characterisation of Australian apartment electricity demand and its implications for low-carbon cities," Energy, Elsevier, vol. 180(C), pages 242-257.
    9. Trotta, Gianluca, 2020. "An empirical analysis of domestic electricity load profiles: Who consumes how much and when?," Applied Energy, Elsevier, vol. 275(C).
    10. Gianluca Trotta & Kirsten Gram-Hanssen & Pernille Lykke Jørgensen, 2020. "Heterogeneity of Electricity Consumption Patterns in Vulnerable Households," Energies, MDPI, vol. 13(18), pages 1-17, September.
    11. Jianzhong Zhou & Han Liu & Yanhe Xu & Wei Jiang, 2018. "A Hybrid Framework for Short Term Multi-Step Wind Speed Forecasting Based on Variational Model Decomposition and Convolutional Neural Network," Energies, MDPI, vol. 11(9), pages 1-18, August.
    12. Yu, Xinran & Ergan, Semiha & Dedemen, Gokmen, 2019. "A data-driven approach to extract operational signatures of HVAC systems and analyze impact on electricity consumption," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Masoud Ahmadipour & Hashim Hizam & Mohammad Lutfi Othman & Mohd Amran Mohd Radzi, 2018. "An Anti-Islanding Protection Technique Using a Wavelet Packet Transform and a Probabilistic Neural Network," Energies, MDPI, vol. 11(10), pages 1-31, October.
    14. Alexander Tureczek & Per Sieverts Nielsen & Henrik Madsen, 2018. "Electricity Consumption Clustering Using Smart Meter Data," Energies, MDPI, vol. 11(4), pages 1-18, April.
    15. Qiu, Dawei & Wang, Yi & Wang, Junkai & Jiang, Chuanwen & Strbac, Goran, 2023. "Personalized retail pricing design for smart metering consumers in electricity market," Applied Energy, Elsevier, vol. 348(C).
    16. Guo, Peiyang & Lam, Jacqueline C.K. & Li, Victor O.K., 2019. "Drivers of domestic electricity users’ price responsiveness: A novel machine learning approach," Applied Energy, Elsevier, vol. 235(C), pages 900-913.
    17. Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Li, Lanlan, 2018. "Compression of smart meter big data: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 59-69.
    18. Tang, Rui & Yildiz, Baran & Leong, Philip H.W. & Vassallo, Anthony & Dore, Jonathon, 2019. "Residential battery sizing model using net meter energy data clustering," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    19. Lesley Thomson & David Jenkins, 2023. "The Use of Real Energy Consumption Data in Characterising Residential Energy Demand with an Inventory of UK Datasets," Energies, MDPI, vol. 16(16), pages 1-29, August.
    20. Li, Jianbin & Chen, Zhiqiang & Cheng, Long & Liu, Xiufeng, 2022. "Energy data generation with Wasserstein Deep Convolutional Generative Adversarial Networks," Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:514-:d:133773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.