IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v97y2021ics0140988320301882.html
   My bibliography  Save this article

The increasing cost of ignoring Coase: Inefficient electricity tariffs, welfare loss and welfare-reducing technological change

Author

Listed:
  • Farrell, Niall

Abstract

In this paper, I show that not only do distortionary electricity tariffs create welfare loss, they create a platform for growing welfare losses with expected technological change. I estimate the welfare loss attributable to existing British electricity tariffs, finding that they are equivalent to between 6% and 18% of domestic consumption value. Losses are greater than unpriced distributional and environmental counter-effects and therefore common arguments against reform are invalid. Expected technological change will increase this welfare loss. Deployment of distributed energy resources (e.g. solar) benefits adopters at the expense of non-adopters as tariffs are recalibrated to recover fixed costs. Reform on Coasian principles avoids these welfare losses and redistributional effects. The structure of electricity tariffs will therefore determine whether technological change is beneficial to consumers. In providing these estimates, I provide both analytical and numerical insight. I combine household-level micro-data with information on utility cost and tariff structure. I propose a simulation methodology to elicit the welfare effects of technological change.

Suggested Citation

  • Farrell, Niall, 2021. "The increasing cost of ignoring Coase: Inefficient electricity tariffs, welfare loss and welfare-reducing technological change," Energy Economics, Elsevier, vol. 97(C).
  • Handle: RePEc:eee:eneeco:v:97:y:2021:i:c:s0140988320301882
    DOI: 10.1016/j.eneco.2020.104848
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988320301882
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2020.104848?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McKenna, Eoghan & Pless, Jacquelyn & Darby, Sarah J., 2018. "Solar photovoltaic self-consumption in the UK residential sector: New estimates from a smart grid demonstration project," Energy Policy, Elsevier, vol. 118(C), pages 482-491.
    2. Labandeira, Xavier & Labeaga, José M. & López-Otero, Xiral, 2017. "A meta-analysis on the price elasticity of energy demand," Energy Policy, Elsevier, vol. 102(C), pages 549-568.
    3. Richard Green and Iain Staffell, 2017. "Prosumage and the British Electricity Market," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    4. Michael Grubb and David Newbery, 2018. "UK Electricity Market Reform and the Energy Transition: Emerging Lessons," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    5. Agustin J. Ros, 2017. "An Econometric Assessment of Electricity Demand in the United States Using Utility-specific Panel Data and the Impact of Retail Competition on Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    6. Simon Porcher, 2014. "Efficiency and equity in two-part tariffs: the case of residential water rates," Applied Economics, Taylor & Francis Journals, vol. 46(5), pages 539-555, February.
    7. Lucas W. Davis & Erich Muehlegger, 2010. "Do Americans consume too little natural gas? An empirical test of marginal cost pricing," RAND Journal of Economics, RAND Corporation, vol. 41(4), pages 791-810, December.
    8. Scott Agnew & Paul Dargusch, 2015. "Effect of residential solar and storage on centralized electricity supply systems," Nature Climate Change, Nature, vol. 5(4), pages 315-318, April.
    9. Fan, Shu & Hyndman, Rob J., 2011. "The price elasticity of electricity demand in South Australia," Energy Policy, Elsevier, vol. 39(6), pages 3709-3719, June.
    10. Lucas W. Davis, 2014. "The Economic Cost of Global Fuel Subsidies," American Economic Review, American Economic Association, vol. 104(5), pages 581-585, May.
    11. Paul J. Burke and Ashani Abayasekara, 2018. "The Price Elasticity of Electricity Demand in the United States: A Three-Dimensional Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    12. Farrell, Niall, 2017. "What Factors Drive Inequalities in Carbon Tax Incidence? Decomposing Socioeconomic Inequalities in Carbon Tax Incidence in Ireland," Ecological Economics, Elsevier, vol. 142(C), pages 31-45.
    13. Koichiro Ito, 2014. "Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing," American Economic Review, American Economic Association, vol. 104(2), pages 537-563, February.
    14. Paul L. Joskow, 2008. "Lessons Learned from Electricity Market Liberalization," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 9-42.
    15. Severin Borenstein & Lucas W. Davis, 2012. "The Equity and Efficiency of Two-Part Tariffs in U.S. Natural Gas Markets," Journal of Law and Economics, University of Chicago Press, vol. 55(1), pages 75-128.
    16. Severin Borenstein, 2012. "The Redistributional Impact of Nonlinear Electricity Pricing," American Economic Journal: Economic Policy, American Economic Association, vol. 4(3), pages 56-90, August.
    17. Espey, James A. & Espey, Molly, 2004. "Turning on the Lights: A Meta-Analysis of Residential Electricity Demand Elasticities," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 36(1), pages 65-81, April.
    18. Valeriya Azarova & Dominik Engel & Cornelia Ferner & Andrea Kollmann & Johannes Reichl, 2018. "Exploring the impact of network tariffs on household electricity expenditures using load profiles and socio-economic characteristics," Nature Energy, Nature, vol. 3(4), pages 317-325, April.
    19. Thomas Morstyn & Niall Farrell & Sarah J. Darby & Malcolm D. McCulloch, 2018. "Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants," Nature Energy, Nature, vol. 3(2), pages 94-101, February.
    20. Crago, Christine Lasco & Chernyakhovskiy, Ilya, 2017. "Are policy incentives for solar power effective? Evidence from residential installations in the Northeast," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 132-151.
    21. Baker, Paul & Blundell, Richard & Micklewright, John, 1989. "Modelling Household Energy Expenditures Using Micro-data," Economic Journal, Royal Economic Society, vol. 99(397), pages 720-738, September.
    22. Karneyeva, Yuliya & Wüstenhagen, Rolf, 2017. "Solar feed-in tariffs in a post-grid parity world: The role of risk, investor diversity and business models," Energy Policy, Elsevier, vol. 106(C), pages 445-456.
    23. Amountzias, Chrysovalantis & Dagdeviren, Hulya & Patokos, Tassos, 2017. "Pricing decisions and market power in the UK electricity market: A VECM approach," Energy Policy, Elsevier, vol. 108(C), pages 467-473.
    24. Buchanan, James M, 1969. "External Diseconomies, Corrective Taxes, and Market Structure," American Economic Review, American Economic Association, vol. 59(1), pages 174-177, March.
    25. de La Tour, Arnaud & Glachant, Matthieu & Ménière, Yann, 2013. "Predicting the costs of photovoltaic solar modules in 2020 using experience curve models," Energy, Elsevier, vol. 62(C), pages 341-348.
    26. Arun Advani & George Stoye, 2017. "Cheaper, Greener and More Efficient: Rationalising UK Carbon Prices," Fiscal Studies, Institute for Fiscal Studies, vol. 38, pages 269-299, June.
    27. Schulte, Isabella & Heindl, Peter, 2017. "Price and income elasticities of residential energy demand in Germany," Energy Policy, Elsevier, vol. 102(C), pages 512-528.
    28. Massimo Filippini, 1999. "Swiss residential demand for electricity," Applied Economics Letters, Taylor & Francis Journals, vol. 6(8), pages 533-538.
    29. Salvador Barrios & Jonathan Pycroft & Bert Saveyn, 2013. "The marginal cost of public funds in the EU: the case of labour versus green taxes," Taxation Papers 35, Directorate General Taxation and Customs Union, European Commission.
    30. Catherine Waddams & Ruth Hancock, 1998. "Distributional effects of liberalising UK residential utility markets," Fiscal Studies, Institute for Fiscal Studies, vol. 19(3), pages 295-319, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farrell, Niall & Meles, Tensay Hadush, 2023. "The equity and efficiency of electricity network tariffs," Papers WP744, Economic and Social Research Institute (ESRI).
    2. Farrell, Niall, 2023. "Calculating efficient Distribution use of System (DUoS) charges for Ireland: Indicative tariffs for residential, commercial and industrial consumers," Papers WP743, Economic and Social Research Institute (ESRI).
    3. Farrell, Niall & Humes, Harry, 2022. "Diminishing deadweight loss through energy subsidy cost recovery," Papers WP727, Economic and Social Research Institute (ESRI).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farrell, Niall & Humes, Harry, 2022. "Diminishing deadweight loss through energy subsidy cost recovery," Papers WP727, Economic and Social Research Institute (ESRI).
    2. Farrell, Niall & Meles, Tensay Hadush, 2023. "The equity and efficiency of electricity network tariffs," Papers WP744, Economic and Social Research Institute (ESRI).
    3. Robert W. Hahn & Robert D. Metcalfe, 2021. "Efficiency and Equity Impacts of Energy Subsidies," American Economic Review, American Economic Association, vol. 111(5), pages 1658-1688, May.
    4. Jerzy Andruszkiewicz & Józef Lorenc & Agnieszka Weychan, 2019. "Demand Price Elasticity of Residential Electricity Consumers with Zonal Tariff Settlement Based on Their Load Profiles," Energies, MDPI, vol. 12(22), pages 1-22, November.
    5. Manuel Frondel and Gerhard Kussel, 2019. "Switching on Electricity Demand Response: Evidence for German Households," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    6. Dorothée CHARLIER & Mouez FODHA & Djamel KIRAT, 2021. "CO2 Emissions from the Residential Sector in Europe: Some Insights form a Country-Level Assessment," LEO Working Papers / DR LEO 2849, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    7. Tilov, Ivan & Farsi, Mehdi & Volland, Benjamin, 2020. "From frugal Jane to wasteful John: A quantile regression analysis of Swiss households’ electricity demand," Energy Policy, Elsevier, vol. 138(C).
    8. Ansarin, Mohammad & Ghiassi-Farrokhfal, Yashar & Ketter, Wolfgang & Collins, John, 2020. "The economic consequences of electricity tariff design in a renewable energy era," Applied Energy, Elsevier, vol. 275(C).
    9. Woo, C.K. & Liu, Y. & Zarnikau, J. & Shiu, A. & Luo, X. & Kahrl, F., 2018. "Price elasticities of retail energy demands in the United States: New evidence from a panel of monthly data for 2001–2016," Applied Energy, Elsevier, vol. 222(C), pages 460-474.
    10. Andruszkiewicz, Jerzy & Lorenc, Józef & Weychan, Agnieszka, 2020. "Seasonal variability of price elasticity of demand of households using zonal tariffs and its impact on hourly load of the power system," Energy, Elsevier, vol. 196(C).
    11. McRae, Shaun D. & Wolak, Frank A., 2021. "Retail pricing in Colombia to support the efficient deployment of distributed generation and electric stoves," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    12. Pellini, Elisabetta, 2021. "Estimating income and price elasticities of residential electricity demand with Autometrics," Energy Economics, Elsevier, vol. 101(C).
    13. Csereklyei, Zsuzsanna, 2020. "Price and income elasticities of residential and industrial electricity demand in the European Union," Energy Policy, Elsevier, vol. 137(C).
    14. Çetinkaya, Murat & Başaran, Alparslan A. & Bağdadioğlu, Necmiddin, 2015. "Electricity reform, tariff and household elasticity in Turkey," Utilities Policy, Elsevier, vol. 37(C), pages 79-85.
    15. Ansarin, Mohammad & Ghiassi-Farrokhfal, Yashar & Ketter, Wolfgang & Collins, John, 2020. "Cross-subsidies among residential electricity prosumers from tariff design and metering infrastructure," Energy Policy, Elsevier, vol. 145(C).
    16. Mar Reguant, 2018. "The Efficiency and Sectoral Distributional Implications of Large-Scale Renewable Policies," NBER Working Papers 24398, National Bureau of Economic Research, Inc.
    17. Berger, Johannes & Strohner, Ludwig, 2022. "Extensions of the Energy PUblic Policy Model for Austria and other European countries E-(PuMA)," Research Papers 19, EcoAustria – Institute for Economic Research.
    18. Dorothee Charlier and Sondes Kahouli, 2019. "From Residential Energy Demand to Fuel Poverty: Income-induced Non-linearities in the Reactions of Households to Energy Price Fluctuations," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    19. Ivan Faiella & Luciano Lavecchia, 2021. "Households' energy demand and the effects of carbon pricing in Italy," Questioni di Economia e Finanza (Occasional Papers) 614, Bank of Italy, Economic Research and International Relations Area.
    20. Nina Boogen & Souvik Datta & Massimo Filippini, 2014. "Going beyond tradition: Estimating residential electricity demand using an appliance index and energy services," CER-ETH Economics working paper series 14/200, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.

    More about this item

    Keywords

    Electricity tariffs; Distortion; Simulation; Disruptive technological change;
    All these keywords.

    JEL classification:

    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • L98 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Government Policy
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:97:y:2021:i:c:s0140988320301882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.