IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v137y2020ics0301421519306664.html
   My bibliography  Save this article

Price and income elasticities of residential and industrial electricity demand in the European Union

Author

Listed:
  • Csereklyei, Zsuzsanna

Abstract

This study examines the short- and long-run price and income elasticities of residential and industrial electricity demand in the European Union between 1996 and 2016. Instrumental variable models using the between estimator, as well as dynamic panel models are employed to present robust estimates, and to assess the impact of different methodologies on the reported elasticities. The long-run price elasticity of residential electricity consumption is estimated between −0.53 and −0.56. These elasticities are more inelastic than that of industrial electricity use, which is reported between −0.75 and −1.01. The choice of different econometric methodologies has only moderate impact on the estimates. While long-run residential income elasticity estimates are moderately inelastic and estimated around 0.61, industrial electricity use tends to be closely tied to income, with elasticities between 0.76 and 1.08. Electricity demand in all sectors is highly price and income inelastic in the short run. Additionally, population density, temperatures, and policy measures also influence sectoral electricity use. The above estimates can aid the design of European energy and environmental policy.

Suggested Citation

  • Csereklyei, Zsuzsanna, 2020. "Price and income elasticities of residential and industrial electricity demand in the European Union," Energy Policy, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:enepol:v:137:y:2020:i:c:s0301421519306664
    DOI: 10.1016/j.enpol.2019.111079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519306664
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.111079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Labandeira, Xavier & Labeaga, José M. & López-Otero, Xiral, 2017. "A meta-analysis on the price elasticity of energy demand," Energy Policy, Elsevier, vol. 102(C), pages 549-568.
    2. Alberini, Anna & Filippini, Massimo, 2011. "Response of residential electricity demand to price: The effect of measurement error," Energy Economics, Elsevier, vol. 33(5), pages 889-895, September.
    3. Zsuzsanna Csereklyei, M. d. Mar Rubio-Varas, and David I. Stern, 2016. "Energy and Economic Growth: The Stylized Facts," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    4. Urga, Giovanni & Walters, Chris, 2003. "Dynamic translog and linear logit models: a factor demand analysis of interfuel substitution in US industrial energy demand," Energy Economics, Elsevier, vol. 25(1), pages 1-21, January.
    5. Fell, Harrison & Li, Shanjun & Paul, Anthony, 2014. "A new look at residential electricity demand using household expenditure data," International Journal of Industrial Organization, Elsevier, vol. 33(C), pages 37-47.
    6. Inglesi-Lotz, R., 2011. "The evolution of price elasticity of electricity demand in South Africa: A Kalman filter application," Energy Policy, Elsevier, vol. 39(6), pages 3690-3696, June.
    7. Würzburg, Klaas & Labandeira, Xavier & Linares, Pedro, 2013. "Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria," Energy Economics, Elsevier, vol. 40(S1), pages 159-171.
    8. Javier Alvarez & Manuel Arellano, 2003. "The Time Series and Cross-Section Asymptotics of Dynamic Panel Data Estimators," Econometrica, Econometric Society, vol. 71(4), pages 1121-1159, July.
    9. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
    10. Alberini, Anna & Gans, Will & Velez-Lopez, Daniel, 2011. "Residential consumption of gas and electricity in the U.S.: The role of prices and income," Energy Economics, Elsevier, vol. 33(5), pages 870-881, September.
    11. Graf, Christoph & Wozabal, David, 2013. "Measuring competitiveness of the EPEX spot market for electricity," Energy Policy, Elsevier, vol. 62(C), pages 948-958.
    12. da Silva, Patrícia Pereira & Cerqueira, Pedro A., 2017. "Assessing the determinants of household electricity prices in the EU: a system-GMM panel data approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1131-1137.
    13. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    14. A. Pirotte, 2003. "Convergence of the static estimation toward the long-run effects of dynamic panel data models: a labour demand illustration," Applied Economics Letters, Taylor & Francis Journals, vol. 10(13), pages 843-847.
    15. Burke, Paul J. & Csereklyei, Zsuzsanna, 2016. "Understanding the energy-GDP elasticity: A sectoral approach," Energy Economics, Elsevier, vol. 58(C), pages 199-210.
    16. Han, Chirok & Phillips, Peter C. B., 2010. "Gmm Estimation For Dynamic Panels With Fixed Effects And Strong Instruments At Unity," Econometric Theory, Cambridge University Press, vol. 26(1), pages 119-151, February.
    17. Bacchiocchi, Emanuele & Florio, Massimo & Taveggia, Giulia, 2015. "Asymmetric effects of electricity regulatory reforms in the EU15 and in the New Member States: Empirical evidence from residential prices 1990–2011," Utilities Policy, Elsevier, vol. 35(C), pages 72-90.
    18. Paul J. Burke and Ashani Abayasekara, 2018. "The Price Elasticity of Electricity Demand in the United States: A Three-Dimensional Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    19. Tooraj Jamasb and Michael Pollitt, 2005. "Electricity Market Reform in the European Union: Review of Progress toward Liberalization & Integration," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 11-42.
    20. Jinyong Hahn & Guido Kuersteiner, 2002. "Asymptotically Unbiased Inference for a Dynamic Panel Model with Fixed Effects when Both "n" and "T" Are Large," Econometrica, Econometric Society, vol. 70(4), pages 1639-1657, July.
    21. Paul, Anthony & Myers, Erica & Palmer, Karen, 2009. "A Partial Adjustment Model of U.S. Electricity Demand by Region, Season, and Sector," RFF Working Paper Series dp-08-50, Resources for the Future.
    22. Wang, Nan & Mogi, Gento, 2017. "Industrial and residential electricity demand dynamics in Japan: How did price and income elasticities evolve from 1989 to 2014?," Energy Policy, Elsevier, vol. 106(C), pages 233-243.
    23. Burke, Paul J. & Yang, Hewen, 2016. "The price and income elasticities of natural gas demand: International evidence," Energy Economics, Elsevier, vol. 59(C), pages 466-474.
    24. Havranek, Tomas & Irsova, Zuzana & Janda, Karel, 2012. "Demand for gasoline is more price-inelastic than commonly thought," Energy Economics, Elsevier, vol. 34(1), pages 201-207.
    25. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    26. Brons, Martijn & Nijkamp, Peter & Pels, Eric & Rietveld, Piet, 2008. "A meta-analysis of the price elasticity of gasoline demand. A SUR approach," Energy Economics, Elsevier, vol. 30(5), pages 2105-2122, September.
    27. Bernard, Jean-Thomas & Bolduc, Denis & Yameogo, Nadège-Désirée, 2011. "A pseudo-panel data model of household electricity demand," Resource and Energy Economics, Elsevier, vol. 33(1), pages 315-325, January.
    28. Lijesen, Mark G., 2007. "The real-time price elasticity of electricity," Energy Economics, Elsevier, vol. 29(2), pages 249-258, March.
    29. Maddala, G S, et al, 1997. "Estimation of Short-Run and Long-Run Elasticities of Energy Demand from Panel Data Using Shrinkage Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 90-100, January.
    30. Bönte, Werner & Nielen, Sebastian & Valitov, Niyaz & Engelmeyer, Torben, 2015. "Price elasticity of demand in the EPEX spot market for electricity—New empirical evidence," Economics Letters, Elsevier, vol. 135(C), pages 5-8.
    31. Garcia-Cerrutti, L. Miguel, 2000. "Estimating elasticities of residential energy demand from panel county data using dynamic random variables models with heteroskedastic and correlated error terms," Resource and Energy Economics, Elsevier, vol. 22(4), pages 355-366, October.
    32. Csereklyei, Zsuzsanna & Thurner, Paul W. & Langer, Johannes & Küchenhoff, Helmut, 2017. "Energy paths in the European Union: A model-based clustering approach," Energy Economics, Elsevier, vol. 65(C), pages 442-457.
    33. Dergiades, Theologos & Tsoulfidis, Lefteris, 2008. "Estimating residential demand for electricity in the United States, 1965-2006," Energy Economics, Elsevier, vol. 30(5), pages 2722-2730, September.
    34. Alberini, Anna & Gans, Will & Velez-Lopez, Daniel, 2011. "Residential Consumption of Gas and Electricity in the U.S.: The Role of Prices and Income," Sustainable Development Papers 99637, Fondazione Eni Enrico Mattei (FEEM).
    35. William Hauk & Romain Wacziarg, 2009. "A Monte Carlo study of growth regressions," Journal of Economic Growth, Springer, vol. 14(2), pages 103-147, June.
    36. Moreno, Blanca & López, Ana J. & García-Álvarez, María Teresa, 2012. "The electricity prices in the European Union. The role of renewable energies and regulatory electric market reforms," Energy, Elsevier, vol. 48(1), pages 307-313.
    37. Schulte, Isabella & Heindl, Peter, 2017. "Price and income elasticities of residential energy demand in Germany," Energy Policy, Elsevier, vol. 102(C), pages 512-528.
    38. Espey, James A. & Espey, Molly, 2004. "Turning on the Lights: A Meta-Analysis of Residential Electricity Demand Elasticities," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 36(1), pages 1-17, April.
    39. Miller, Mark & Alberini, Anna, 2016. "Sensitivity of price elasticity of demand to aggregation, unobserved heterogeneity, price trends, and price endogeneity: Evidence from U.S. Data," Energy Policy, Elsevier, vol. 97(C), pages 235-249.
    40. Okajima, Shigeharu & Okajima, Hiroko, 2013. "Estimation of Japanese price elasticities of residential electricity demand, 1990–2007," Energy Economics, Elsevier, vol. 40(C), pages 433-440.
    41. Baltagi, Badi H & Griffin, James M, 1984. "Short and Long Run Effects in Pooled Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(3), pages 631-645, October.
    42. Roger Fouquet, 2014. "Editor's Choice Long-Run Demand for Energy Services: Income and Price Elasticities over Two Hundred Years," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 8(2), pages 186-207.
    43. Bölük, Gülden & Koç, A. Ali, 2010. "Electricity demand of manufacturing sector in Turkey: A translog cost approach," Energy Economics, Elsevier, vol. 32(3), pages 609-615, May.
    44. Blundell, Richard & Pashardes, Panos & Weber, Guglielmo, 1993. "What Do We Learn About Consumer Demand Patterns from Micro Data?," American Economic Review, American Economic Association, vol. 83(3), pages 570-597, June.
    45. Csereklyei, Zsuzsanna & Stern, David I., 2015. "Global energy use: Decoupling or convergence?," Energy Economics, Elsevier, vol. 51(C), pages 633-641.
    46. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    47. Pirotte, Alain, 1999. "Convergence of the static estimation toward the long run effects of dynamic panel data models," Economics Letters, Elsevier, vol. 63(2), pages 151-158, May.
    48. Costa-Campi, Maria Teresa & Trujillo-Baute, Elisa, 2015. "Retail price effects of feed-in tariff regulation," Energy Economics, Elsevier, vol. 51(C), pages 157-165.
    49. Robert J. Barro, 2015. "Convergence and Modernisation," Economic Journal, Royal Economic Society, vol. 125(585), pages 911-942, June.
    50. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    51. Hisnanick, John J. & Kyer, Ben L., 1995. "Assessing a disaggregated energy input : Using confidence intervals around translog elasticity estimates," Energy Economics, Elsevier, vol. 17(2), pages 125-132, April.
    52. Stern, David I., 2010. "Between estimates of the emissions-income elasticity," Ecological Economics, Elsevier, vol. 69(11), pages 2173-2182, September.
    53. Fouquet, Roger, 2014. "Long run demand for energy services: income and price elasticities over two hundred years," LSE Research Online Documents on Economics 59070, London School of Economics and Political Science, LSE Library.
    54. Krishnamurthy, Chandra Kiran B. & Kriström, Bengt, 2015. "A cross-country analysis of residential electricity demand in 11 OECD-countries," Resource and Energy Economics, Elsevier, vol. 39(C), pages 68-88.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul J. Burke and Ashani Abayasekara, 2018. "The Price Elasticity of Electricity Demand in the United States: A Three-Dimensional Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    2. Kostakis, Ioannis & Lolos, Sarantis & Sardianou, Eleni, 2021. "Residential natural gas demand: Assessing the evidence from Greece using pseudo-panels, 2012–2019," Energy Economics, Elsevier, vol. 99(C).
    3. Gautam, Tej K. & Paudel, Krishna P., 2018. "Estimating sectoral demands for electricity using the pooled mean group method," Applied Energy, Elsevier, vol. 231(C), pages 54-67.
    4. Pellini, Elisabetta, 2021. "Estimating income and price elasticities of residential electricity demand with Autometrics," Energy Economics, Elsevier, vol. 101(C).
    5. Mark Miller & Anna Alberini, 2015. "Sensitivity of price elasticity of demand to aggregation, unobserved heterogeneity, price trends, and price endogeneity: Evidence from U.S. Data," CER-ETH Economics working paper series 15/223, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    6. Miller, Mark & Alberini, Anna, 2016. "Sensitivity of price elasticity of demand to aggregation, unobserved heterogeneity, price trends, and price endogeneity: Evidence from U.S. Data," Energy Policy, Elsevier, vol. 97(C), pages 235-249.
    7. Burke, Paul J. & Yang, Hewen, 2016. "The price and income elasticities of natural gas demand: International evidence," Energy Economics, Elsevier, vol. 59(C), pages 466-474.
    8. Gautam, Tej K. & Paudel, Krishna P., 2018. "The demand for natural gas in the Northeastern United States," Energy, Elsevier, vol. 158(C), pages 890-898.
    9. Favero, Filippo & Grossi, Luigi, 2023. "Analysis of individual natural gas consumption and price elasticity: Evidence from billing data in Italy," Energy Economics, Elsevier, vol. 118(C).
    10. Wang, Banban & Wei, Jie & Tan, Xiujie & Su, Bin, 2021. "The sectorally heterogeneous and time-varying price elasticities of energy demand in China," Energy Economics, Elsevier, vol. 102(C).
    11. Frondel, Manuel & Kussel, Gerhard & Sommer, Stephan, 2019. "Heterogeneity in the price response of residential electricity demand: A dynamic approach for Germany," Resource and Energy Economics, Elsevier, vol. 57(C), pages 119-134.
    12. Cho, Seong-Hoon & Kim, Taeyoung & Kim, Hyun Jae & Park, Kihyun & Roberts, Roland K., 2015. "Regionally-varying and regionally-uniform electricity pricing policies compared across four usage categories," Energy Economics, Elsevier, vol. 49(C), pages 182-191.
    13. Filippini, Massimo & Hirl, Bettina & Masiero, Giuliano, 2018. "Habits and rational behaviour in residential electricity demand," Resource and Energy Economics, Elsevier, vol. 52(C), pages 137-152.
    14. Burke, Paul J. & Csereklyei, Zsuzsanna, 2016. "Understanding the energy-GDP elasticity: A sectoral approach," Energy Economics, Elsevier, vol. 58(C), pages 199-210.
    15. Dorothée CHARLIER & Mouez FODHA & Djamel KIRAT, 2021. "CO2 Emissions from the Residential Sector in Europe: Some Insights form a Country-Level Assessment," LEO Working Papers / DR LEO 2849, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    16. Massimo Filippini & Bettina Hirl & Giuliano Masiero, 2015. "Rational habits in residential electricity demand," IdEP Economic Papers 1506, USI Università della Svizzera italiana.
    17. Alberini, Anna & Gans, Will & Velez-Lopez, Daniel, 2011. "Residential consumption of gas and electricity in the U.S.: The role of prices and income," Energy Economics, Elsevier, vol. 33(5), pages 870-881, September.
    18. Trotta, Gianluca & Hansen, Anders Rhiger & Sommer, Stephan, 2022. "The price elasticity of residential district heating demand: New evidence from a dynamic panel approach," Energy Economics, Elsevier, vol. 112(C).
    19. Ryu, Jun-Yeol & Kim, Dae-Wook & Kim, Man-Keun, 2021. "Household differentiation and residential electricity demand in Korea," Energy Economics, Elsevier, vol. 95(C).
    20. Randazzo, Teresa & De Cian, Enrica & Mistry, Malcolm N., 2020. "Air conditioning and electricity expenditure: The role of climate in temperate countries," Economic Modelling, Elsevier, vol. 90(C), pages 273-287.

    More about this item

    Keywords

    Electricity demand; Price elasticity; Income elasticity; European Union;
    All these keywords.

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:137:y:2020:i:c:s0301421519306664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.