IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v163y2022icp64-87.html
   My bibliography  Save this article

Efficient and stable data-sharing in a public transit oligopoly as a coopetitive game

Author

Listed:
  • Liu, Qi
  • Chow, Joseph Y.J.

Abstract

In this study, various forms of data sharing are axiomatized. A new way of studying coopetition, especially data-sharing coopetition, is proposed. The problem of the Bayesian game with signal dependence on actions is observed; and a method to handle such dependence is proposed. We focus on fixed-route transit service markets. A discrete model is first presented to analyze the data-sharing coopetition of an oligopolistic transit market when an externality effect exists. Given a fixed data sharing structure, a Bayesian game is used to capture the competition under uncertainty while a coalition formation model is used to determine the stable data-sharing decisions. A new method of composite coalition is proposed to study efficient markets. An alternative continuous model is proposed to handle large networks using simulation. We apply these models to various types of networks. Test results show that perfect information may lead to perfect selfishness. Sharing more data does not necessarily improve transit service for all groups, at least if transit operators remain noncooperative. Service complementarity does not necessarily guarantee a grand data-sharing coalition. These results can provide insights on policy-making, like whether city authorities should enforce compulsory data-sharing along with cooperation between operators or setup a voluntary data-sharing platform.

Suggested Citation

  • Liu, Qi & Chow, Joseph Y.J., 2022. "Efficient and stable data-sharing in a public transit oligopoly as a coopetitive game," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 64-87.
  • Handle: RePEc:eee:transb:v:163:y:2022:i:c:p:64-87
    DOI: 10.1016/j.trb.2022.06.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261522001126
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2022.06.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fisk, Caroline, 1980. "Some developments in equilibrium traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 14(3), pages 243-255, September.
    2. Spiess, Heinz & Florian, Michael, 1989. "Optimal strategies: A new assignment model for transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 23(2), pages 83-102, April.
    3. David CARF, 2015. "A model for coopetitive games," Journal of Mathematical Economics and Finance, ASERS Publishing, vol. 1(1), pages 46-75.
    4. Carfì, David & Schilirò, Daniele, 2011. "A framework of coopetitive games: applications to the Greek crisis," MPRA Paper 78089, University Library of Munich, Germany.
    5. Zubieta, Lourdes, 1998. "A network equilibrium model for oligopolistic competition in city bus services," Transportation Research Part B: Methodological, Elsevier, vol. 32(6), pages 413-422, August.
    6. Diamantoudi, Effrosyni & Xue, Licun, 2007. "Coalitions, agreements and efficiency," Journal of Economic Theory, Elsevier, vol. 136(1), pages 105-125, September.
    7. Zhou, Jing & Lam, William H.K. & Heydecker, Benjamin G., 2005. "The generalized Nash equilibrium model for oligopolistic transit market with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 39(6), pages 519-544, July.
    8. Marco Slikker & Henk Norde & Stef Tijs, 2003. "Information Sharing Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-12.
    9. Robert J. Aumann, 1999. "Interactive epistemology I: Knowledge," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(3), pages 263-300.
    10. Theodoros P. Pantelidis & Joseph Y. J. Chow & Saeid Rasulkhani, 2019. "A many-to-many assignment game and stable outcome algorithm to evaluate collaborative Mobility-as-a-Service platforms," Papers 1911.04435, arXiv.org, revised Jun 2020.
    11. Martin J. Osborne & Ariel Rubinstein, 1994. "A Course in Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262650401, December.
    12. Muto, Shigeo & Potters, Jos & Tijs, Stef, 1989. "Information Market Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(2), pages 209-226.
    13. repec:srs:volume:v:1:y:2015:i:1:p:46-75 is not listed on IDEAS
    14. Rasulkhani, Saeid & Chow, Joseph Y.J., 2019. "Route-cost-assignment with joint user and operator behavior as a many-to-one stable matching assignment game," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 60-81.
    15. Rodica Brânzei & Stef Tijs & Judith Timmer, 2001. "Collecting Information To Improve Decision-Making," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-12.
    16. Ray, Debraj, 2007. "A Game-Theoretic Perspective on Coalition Formation," OUP Catalogue, Oxford University Press, number 9780199207954, Decembrie.
    17. Wong, Yale Z. & Hensher, David A. & Mulley, Corinne, 2020. "Mobility as a service (MaaS): Charting a future context," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 5-19.
    18. Sun, Lian-Ju & Gao, Zi-You, 2007. "An equilibrium model for urban transit assignment based on game theory," European Journal of Operational Research, Elsevier, vol. 181(1), pages 305-314, August.
    19. Patrick T. Harker, 1988. "Private Market Participation in Urban Mass Transportation: Application of Computable Equilibrium Models of Network Competition," Transportation Science, INFORMS, vol. 22(2), pages 96-111, May.
    20. Yilmaz, Ozhan & Savasaneril, Secil, 2012. "Collaboration among small shippers in a transportation market," European Journal of Operational Research, Elsevier, vol. 218(2), pages 408-415.
    21. Clark, Derek J. & Jørgensen, Finn & Mathisen, Terje Andreas, 2011. "Relationships between fares, trip length and market competition," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 611-624, August.
    22. Bacchetta, Philippe & Espinosa, Maria Paz, 1995. "Information sharing and tax competition among governments," Journal of International Economics, Elsevier, vol. 39(1-2), pages 103-121, August.
    23. Clark, Derek John & Jørgensen, Finn & Mathisen, Terje Andreas, 2014. "Competition in complementary transport services," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 146-159.
    24. Pantelidis, Theodoros P. & Chow, Joseph Y.J. & Rasulkhani, Saeid, 2020. "A many-to-many assignment game and stable outcome algorithm to evaluate collaborative mobility-as-a-service platforms," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 79-100.
    25. repec:srs:journl:volume:v:1:y:2015:i:1:p:46-75 is not listed on IDEAS
    26. Enrique Fernandez & Patrice Marcotte, 1992. "Operators-Users Equilibrium Model in a Partially Regulated Transit System," Transportation Science, INFORMS, vol. 26(2), pages 93-105, May.
    27. Sang Nguyen & Stefano Pallottino & Michel Gendreau, 1998. "Implicit Enumeration of Hyperpaths in a Logit Model for Transit Networks," Transportation Science, INFORMS, vol. 32(1), pages 54-64, February.
    28. Muto, S. & Potters, J.A.M. & Tijs, S.H., 1989. "Information market games," Other publications TiSEM 2f3f1109-5579-4e6a-9482-e, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Preston, John, 2008. "Competition in transit markets," Research in Transportation Economics, Elsevier, vol. 23(1), pages 75-84, January.
    2. van den Berg, Vincent A.C. & Meurs, Henk & Verhoef, Erik T., 2022. "Business models for Mobility as an Service (MaaS)," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 203-229.
    3. Ding, Xiaoshu & Qi, Qi & Jian, Sisi & Yang, Hai, 2023. "Mechanism design for Mobility-as-a-Service platform considering travelers’ strategic behavior and multidimensional requirements," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 1-30.
    4. Zhi-Chun Li & William Lam & S. Wong, 2012. "Optimization of Number of Operators and Allocation of New Lines in an Oligopolistic Transit Market," Networks and Spatial Economics, Springer, vol. 12(1), pages 1-20, March.
    5. Chavis, Celeste & Daganzo, Carlos F., 2013. "Analyzing the structure of informal transit: The evening commute problem," Research in Transportation Economics, Elsevier, vol. 39(1), pages 277-284.
    6. Szeto, W.Y. & Jiang, Y., 2014. "Transit route and frequency design: Bi-level modeling and hybrid artificial bee colony algorithm approach," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 235-263.
    7. Saadia Obadi & Silvia Miquel, 2017. "Clan information market games," Theory and Decision, Springer, vol. 82(4), pages 501-517, April.
    8. Hernández, Daniel & Muñoz, Juan Carlos & Giesen, Ricardo & Delgado, Felipe, 2015. "Analysis of real-time control strategies in a corridor with multiple bus services," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 83-105.
    9. Zubieta, Lourdes, 1998. "A network equilibrium model for oligopolistic competition in city bus services," Transportation Research Part B: Methodological, Elsevier, vol. 32(6), pages 413-422, August.
    10. Vartiainen, Hannu, 2011. "Dynamic coalitional equilibrium," Journal of Economic Theory, Elsevier, vol. 146(2), pages 672-698, March.
    11. Zhou, Jing & Lam, William H.K. & Heydecker, Benjamin G., 2005. "The generalized Nash equilibrium model for oligopolistic transit market with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 39(6), pages 519-544, July.
    12. Zhou, Yaqian & Yang, Hai & Ke, Jintao & Wang, Hai & Li, Xinwei, 2022. "Competition and third-party platform-integration in ride-sourcing markets," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 76-103.
    13. Alparslan Gök, S.Z. & Özcan, İ., 2023. "On big boss fuzzy interval games," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1040-1046.
    14. Shiqian Ji & Jiaming Zhong & Zhaocheng He, 2022. "A Bus Subsidy Scheme Design Model Considering Competition between Bus Companies," Sustainability, MDPI, vol. 14(7), pages 1-19, April.
    15. Alireza Khani & Mark Hickman & Hyunsoo Noh, 2015. "Trip-Based Path Algorithms Using the Transit Network Hierarchy," Networks and Spatial Economics, Springer, vol. 15(3), pages 635-653, September.
    16. Wang, Yineng & Lin, Xi & He, Fang & Li, Meng, 2022. "Designing transit-oriented multi-modal transportation systems considering travelers’ choices," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 292-327.
    17. Pantelidis, Theodoros P. & Chow, Joseph Y.J. & Rasulkhani, Saeid, 2020. "A many-to-many assignment game and stable outcome algorithm to evaluate collaborative mobility-as-a-service platforms," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 79-100.
    18. Zhi-Chun Li & William Lam & S. Wong, 2009. "The Optimal Transit Fare Structure under Different Market Regimes with Uncertainty in the Network," Networks and Spatial Economics, Springer, vol. 9(2), pages 191-216, June.
    19. Lu, Xiao-Yun & Gosling, Geoffrey D. & Ceder, Avi & Tung, Steven & Tso, Kristin & Shladover, Steven & Xiong, Jing & Yoon, Sangwon, 2009. "A Combined Quantitative and Qualitative Approach to Planning for Improved Intermodal Connectivity at California Airports," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1r7227tt, Institute of Transportation Studies, UC Berkeley.
    20. René van den Brink & Ilya Katsev & Gerard van der Laan, 2008. "An Algorithm for Computing the Nucleolus of Disjunctive Additive Games with An Acyclic Permission Structure," Tinbergen Institute Discussion Papers 08-104/1, Tinbergen Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:163:y:2022:i:c:p:64-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.