IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v110y2018icp122-136.html
   My bibliography  Save this article

Managing rail transit peak-hour congestion with a fare-reward scheme

Author

Listed:
  • Yang, Hai
  • Tang, Yili

Abstract

This paper describes a new fare-reward scheme for managing a commuter's departure time choice in a rail transit bottleneck, which aims to incentivize a shift in departure time to the shoulder periods of the peak hours to relieve queuing congestion at transit stations. A framework of the rail transit bottleneck is provided and the user equilibrium with a uniform-fare and the social optimum with service run-dependent fares are determined. A fare-reward scheme (FRS) is then introduced that rewards a commuter with one free trip during shoulder periods after a certain number of paid trips during the peak hours. For a given number of peak-hour commuters and ex-ante uniform fare, the FRS determines the free fare intervals and the reward ratio (the ratio of the free trips to the total number of trips, which is equivalent to the ratio of the number of rewarded commuters to the total number of commuters on each day during the peak hours). The new fare under the FRS is determined so that the transit operator's revenue remains unchanged before and after introducing the FRS. Our study indicates that, depending on the original fare, FRS results in an optimal reward ratio up to 50% and yields a reduction of system total time costs and average equilibrium trip costs by at least 25% and 20%, respectively.

Suggested Citation

  • Yang, Hai & Tang, Yili, 2018. "Managing rail transit peak-hour congestion with a fare-reward scheme," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 122-136.
  • Handle: RePEc:eee:transb:v:110:y:2018:i:c:p:122-136
    DOI: 10.1016/j.trb.2018.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261517300541
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2018.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barry Ubbels & Yin-Yen Tseng & Erik T. Verhoef, 2005. "Value of time, schedule delay and reliability - estimates based on choice behaviour of Dutch commuters facing congestion," ERSA conference papers ersa05p202, European Regional Science Association.
    2. Guo, Xiaolei & Yang, Hai, 2010. "Pareto-improving congestion pricing and revenue refunding with multiple user classes," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 972-982, September.
    3. Nie, Yu (Marco) & Yin, Yafeng, 2013. "Managing rush hour travel choices with tradable credit scheme," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 1-19.
    4. de Palma, André & Lindsey, Robin & Monchambert, Guillaume, 2017. "The economics of crowding in rail transit," Journal of Urban Economics, Elsevier, vol. 101(C), pages 106-122.
    5. Robin Lindsey, C. & van den Berg, Vincent A.C. & Verhoef, Erik T., 2012. "Step tolling with bottleneck queuing congestion," Journal of Urban Economics, Elsevier, vol. 72(1), pages 46-59.
    6. de Palma, André & Kilani, Moez & Proost, Stef, 2015. "Discomfort in mass transit and its implication for scheduling and pricing," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 1-18.
    7. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1993. "A Structural Model of Peak-Period Congestion: A Traffic Bottleneck with Elastic Demand," American Economic Review, American Economic Association, vol. 83(1), pages 161-179, March.
    8. Xiao, Feng & Qian, Zhen (Sean) & Zhang, H. Michael, 2013. "Managing bottleneck congestion with tradable credits," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 1-14.
    9. Tian, Qiong & Huang, Hai-Jun & Yang, Hai, 2007. "Equilibrium properties of the morning peak-period commuting in a many-to-one mass transit system," Transportation Research Part B: Methodological, Elsevier, vol. 41(6), pages 616-631, July.
    10. Haywood, Luke & Koning, Martin, 2015. "The distribution of crowding costs in public transport: New evidence from Paris," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 182-201.
    11. Yoshida, Yuichiro, 2008. "Commuter arrivals and optimal service in mass transit: Does queuing behavior at transit stops matter?," Regional Science and Urban Economics, Elsevier, vol. 38(3), pages 228-251, May.
    12. Peer, Stefanie & Knockaert, Jasper & Verhoef, Erik T., 2016. "Train commuters’ scheduling preferences: Evidence from a large-scale peak avoidance experiment," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 314-333.
    13. Kenneth A. Small & Clifford Winston & Jia Yan, 2005. "Uncovering the Distribution of Motorists' Preferences for Travel Time and Reliability," Econometrica, Econometric Society, vol. 73(4), pages 1367-1382, July.
    14. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    15. Yang, Hai & Meng, Qiang, 1998. "Departure time, route choice and congestion toll in a queuing network with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 32(4), pages 247-260, May.
    16. Braid, Ralph M., 1989. "Uniform versus peak-load pricing of a bottleneck with elastic demand," Journal of Urban Economics, Elsevier, vol. 26(3), pages 320-327, November.
    17. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1990. "Economics of a bottleneck," Journal of Urban Economics, Elsevier, vol. 27(1), pages 111-130, January.
    18. Xiao, Feng & Shen, Wei & Michael Zhang, H., 2012. "The morning commute under flat toll and tactical waiting," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1346-1359.
    19. Lawrence Lan & Hsiang-Yi Lee & Chieh-Hua Wen, 2010. "Effects Of Temporally Differential Fares On Taipei Metro Riders’ Mode And Time-Of-Day Choices," Articles, International Journal of Transport Economics, vol. 37(1).
    20. Laih, Chen-Hsiu, 1994. "Queueing at a bottleneck with single- and multi-step tolls," Transportation Research Part A: Policy and Practice, Elsevier, vol. 28(3), pages 197-208, May.
    21. Sumi, Tomonori & Matsumoto, Yoshiji & Miyaki, Yasuyuki, 1990. "Departure time and route choice of commuters on mass transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 24(4), pages 247-262, August.
    22. Mark Wardman & Gerard Whelan, 2011. "Twenty Years of Rail Crowding Valuation Studies: Evidence and Lessons from British Experience," Transport Reviews, Taylor & Francis Journals, vol. 31(3), pages 379-398.
    23. Yang, Hai & Wang, Xiaolei, 2011. "Managing network mobility with tradable credits," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 580-594, March.
    24. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2017. "Step tolling in an activity-based bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 306-334.
    25. Chen-Hsiu Laih, 2004. "Effects of the optimal step toll scheme on equilibrium commuter behaviour," Applied Economics, Taylor & Francis Journals, vol. 36(1), pages 59-81.
    26. Kraus, Marvin & Yoshida, Yuichiro, 2002. "The Commuter's Time-of-Use Decision and Optimal Pricing and Service in Urban Mass Transit," Journal of Urban Economics, Elsevier, vol. 51(1), pages 170-195, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Hai & Shao, Chaoyi & Wang, Hai & Ye, Jieping, 2020. "Integrated reward scheme and surge pricing in a ridesourcing market," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 126-142.
    2. Tang, Yili & Jiang, Yu & Yang, Hai & Nielsen, Otto Anker, 2020. "Modeling and optimizing a fare incentive strategy to manage queuing and crowding in mass transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 247-267.
    3. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    4. Kamel, Islam & Shalaby, Amer & Abdulhai, Baher, 2020. "A modelling platform for optimizing time-dependent transit fares in large-scale multimodal networks," Transport Policy, Elsevier, vol. 92(C), pages 38-54.
    5. Li, Xueyan & Qiu, Heting & Yang, Yanni & Zhang, Hankun, 2022. "Differentiated fares depend on bus line and time for urban public transport network based on travelers’ day-to-day group behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    6. Thommen, Christoph & Hintermann, Beat, 2023. "Price versus Commitment: Managing the demand for off-peak train tickets in a field experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    7. Anne Halvorsen & Haris N. Koutsopoulos & Zhenliang Ma & Jinhua Zhao, 2020. "Demand management of congested public transport systems: a conceptual framework and application using smart card data," Transportation, Springer, vol. 47(5), pages 2337-2365, October.
    8. Adnan, Muhammad & Nahmias Biran, Bat-hen & Baburajan, Vishnu & Basak, Kakali & Ben-Akiva, Moshe, 2020. "Examining impacts of time-based pricing strategies in public transportation: A study of Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 127-141.
    9. Fu, Yulan & Wang, Chenlan & Liu, Tian-Liang & Huang, Hai-Jun, 2021. "Parking management in the morning commute problem with ridesharing," Research in Transportation Economics, Elsevier, vol. 90(C).
    10. Zhang, Ping & Sun, Huijun & Qu, Yunchao & Yin, Haodong & Jin, Jian Gang & Wu, Jianjun, 2021. "Model and algorithm of coordinated flow controlling with station-based constraints in a metro system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    11. Woo, C.K. & Cao, K.H. & Zarnikau, J. & Yip, T.L. & Chow, A., 2021. "What moves Hong Kong's train ridership?," Research in Transportation Economics, Elsevier, vol. 90(C).
    12. Hintermann, Beat & Thommen, Christoph, 2022. "Price versus Commitment: Managing the Demand for Off-peak Train Tickets in a Field Experiment," Working papers 2022/05, Faculty of Business and Economics - University of Basel.
    13. Ren, Tao & Huang, Hai-Jun, 2020. "A competitive system with transit and highway: Revisiting the political feasibility of road pricing," Transport Policy, Elsevier, vol. 88(C), pages 42-56.
    14. An, Qinhe & Fu, Xiao & Huang, Di & Cheng, Qixiu & Liu, Zhiyuan, 2020. "Analysis of adding-runs strategy for peak-hour regular bus services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    15. Wang, Jing & Zhang, Xiaoning & Wang, Hua & Zhang, Michael, 2019. "Optimal parking supply in bi-modal transportation network considering transit scale economies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 207-229.
    16. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    17. Galit Cohen-Blankshtain & Hillel Bar-Gera & Yoram Shiftan, 2023. "Congestion pricing and positive incentives: conceptual analysis and empirical findings from Israel," Transportation, Springer, vol. 50(2), pages 607-633, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    2. Tang, Yili & Jiang, Yu & Yang, Hai & Nielsen, Otto Anker, 2020. "Modeling and optimizing a fare incentive strategy to manage queuing and crowding in mass transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 247-267.
    3. Vincent van den Berg, "undated". "Self-financing roads under coarse tolling and heterogeneous preferences," Tinbergen Institute Discussion Papers 22-045/VIII, Tinbergen Institute.
    4. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    5. Chen, Hongyu & Nie, Yu (Marco) & Yin, Yafeng, 2015. "Optimal multi-step toll design under general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 775-793.
    6. van den Berg, Vincent A.C., 2014. "Coarse tolling with heterogeneous preferences," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 1-23.
    7. Xu, Da & Guo, Xiaolei & Zhang, Guoqing, 2019. "Constrained optimization for bottleneck coarse tolling," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 1-22.
    8. Bao, Yue & Xiao, Feng & Gao, Zaihan & Gao, Ziyou, 2017. "Investigation of the traffic congestion during public holiday and the impact of the toll-exemption policy," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 58-81.
    9. Yang, Hai & Liu, Wei & Wang, Xiaolei & Zhang, Xiaoning, 2013. "On the morning commute problem with bottleneck congestion and parking space constraints," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 106-118.
    10. Takayama, Yuki, 2020. "Who gains and who loses from congestion pricing in a monocentric city with a bottleneck?," Economics of Transportation, Elsevier, vol. 24(C).
    11. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2014. "Bottleneck model revisited: An activity-based perspective," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 262-287.
    12. Takayama, Yuki & Kuwahara, Masao, 2017. "Bottleneck congestion and residential location of heterogeneous commuters," Journal of Urban Economics, Elsevier, vol. 100(C), pages 65-79.
    13. Li, Zhi-Chun & Zhang, Liping, 2020. "The two-mode problem with bottleneck queuing and transit crowding: How should congestion be priced using tolls and fares?," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 46-76.
    14. Chen, Jin-Yong & Jiang, Rui & Li, Xin-Gang & Hu, Mao-Bin & Jia, Bin & Gao, Zi-You, 2019. "Morning commute problem with queue-length-dependent bottleneck capacity," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 184-215.
    15. Xiao, Ling-Ling & Liu, Tian-Liang & Huang, Hai-Jun & Liu, Ronghui, 2021. "Temporal-spatial allocation of bottleneck capacity for managing morning commute with carpool," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 177-200.
    16. André de Palma & Robin Lindsey & Guillaume Monchambert, 2017. "The Economics of Crowding in Public Transport," Post-Print hal-01203310, HAL.
    17. Jia, Zehui & Wang, David Z.W. & Cai, Xingju, 2016. "Traffic managements for household travels in congested morning commute," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 173-189.
    18. Bao, Yue & Verhoef, Erik T. & Koster, Paul, 2019. "Regulating dynamic congestion externalities with tradable credit schemes: Does a unique equilibrium exist?," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 225-236.
    19. Chen, Hongyu & Liu, Yang & Nie, Yu (Marco), 2015. "Solving the step-tolled bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 210-229.
    20. de Palma, André & Lindsey, Robin & Monchambert, Guillaume, 2017. "The economics of crowding in rail transit," Journal of Urban Economics, Elsevier, vol. 101(C), pages 106-122.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:110:y:2018:i:c:p:122-136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.