IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v41y2007i6p616-631.html
   My bibliography  Save this article

Equilibrium properties of the morning peak-period commuting in a many-to-one mass transit system

Author

Listed:
  • Tian, Qiong
  • Huang, Hai-Jun
  • Yang, Hai

Abstract

This paper analyzes the equilibrium properties of the morning peak-period commuting pattern on a many-to-one transit system with in-vehicle crowding effect and schedule delay cost in a monocentric city. Commuters are assumed to choose their optimal time-of-use decision from various stations/home locations to a single destination/workplace by trading off the travel time and crowding cost against the schedule delay cost. An equivalent mathematical programming model is proposed to characterize the equilibrium state, in which no commuter can reduce his/her total commuting cost by unilaterally changing his/her departure time or train service. Solution of the model yields many insights including the following: (1) commuters living closer to the destination choose trains also chosen by those living farther from the destination; (2) the train arriving at the time desired by everyone is utilized by commuters from all stations; (3) the farther a station is from the workplace, the longer is the peak-period departure duration from that station; (4) finally, a 'saturated' time period exists for each station during which the departure rate of commuters is identical and maximal.

Suggested Citation

  • Tian, Qiong & Huang, Hai-Jun & Yang, Hai, 2007. "Equilibrium properties of the morning peak-period commuting in a many-to-one mass transit system," Transportation Research Part B: Methodological, Elsevier, vol. 41(6), pages 616-631, July.
  • Handle: RePEc:eee:transb:v:41:y:2007:i:6:p:616-631
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(06)00125-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohring, Herbert, 1972. "Optimization and Scale Economies in Urban Bus Transportation," American Economic Review, American Economic Association, vol. 62(4), pages 591-604, September.
    2. Ross, Stephen L. & Yinger, John, 2000. "Timing Equilibria in an Urban Model with Congestion," Journal of Urban Economics, Elsevier, vol. 47(3), pages 390-413, May.
    3. Kraus, Marvin, 2003. "A new look at the two-mode problem," Journal of Urban Economics, Elsevier, vol. 54(3), pages 511-530, November.
    4. Joaquín de Cea & Enrique Fernández, 1993. "Transit Assignment for Congested Public Transport Systems: An Equilibrium Model," Transportation Science, INFORMS, vol. 27(2), pages 133-147, May.
    5. Vukan R. Vuchic, 1969. "Rapid Transit Interstation Spacings for Maximum Number of Passengers," Transportation Science, INFORMS, vol. 3(3), pages 214-232, August.
    6. Alfa, Attahiru Sule & Chen, Mingyuan, 1995. "Temporal distribution of public transport demand during the peak period," European Journal of Operational Research, Elsevier, vol. 83(1), pages 137-153, May.
    7. Sumi, Tomonori & Matsumoto, Yoshiji & Miyaki, Yasuyuki, 1990. "Departure time and route choice of commuters on mass transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 24(4), pages 247-262, August.
    8. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    9. Philippe Jehiel, 1993. "Equilibrium on a Traffic Corridor with Several Congested Modes," Transportation Science, INFORMS, vol. 27(1), pages 16-24, February.
    10. Wang, Judith Y. T. & Yang, Hai & Lindsey, Robin, 2004. "Locating and pricing park-and-ride facilities in a linear monocentric city with deterministic mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 38(8), pages 709-731, September.
    11. Vukan R. Vuchic & Gordon F. Newell, 1968. "Rapid Transit Interstation Spacings for Minimum Travel Time," Transportation Science, INFORMS, vol. 2(4), pages 303-339, November.
    12. Kraus, Marvin & Yoshida, Yuichiro, 2002. "The Commuter's Time-of-Use Decision and Optimal Pricing and Service in Urban Mass Transit," Journal of Urban Economics, Elsevier, vol. 51(1), pages 170-195, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Qiong & Liu, Peng & Ong, Ghim Ping & Huang, Hai-Jun, 2021. "Morning commuting pattern and crowding pricing in a many-to-one public transit system with heterogeneous users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    2. You-Zhi Zeng & Bin Ran & Ning Zhang & Xiaobao Yang & Jia-Jun Shen & She-Jun Deng, 2018. "Optimal Pricing and Service for the Peak-Period Bus Commuting Inefficiency of Boarding Queuing Congestion," Sustainability, MDPI, vol. 10(10), pages 1-14, September.
    3. Ihab Kaddoura & Benjamin Kickhöfer & Andreas Neumann & Alejandro Tirachini, 2015. "Agent-based optimisation of public transport supply and pricing: impacts of activity scheduling decisions and simulation randomness," Transportation, Springer, vol. 42(6), pages 1039-1061, November.
    4. de Palma, André & Lindsey, Robin & Monchambert, Guillaume, 2017. "The economics of crowding in rail transit," Journal of Urban Economics, Elsevier, vol. 101(C), pages 106-122.
    5. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    6. André de Palma & Robin Lindsey & Guillaume Monchambert, 2017. "The Economics of Crowding in Public Transport," Post-Print hal-01203310, HAL.
    7. de Palma, André & Lindsey, Robin, 2001. "Optimal timetables for public transportation," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 789-813, September.
    8. Wang, Wei (Walker) & Wang, David Z.W. & Zhang, Fangni & Sun, Huijun & Zhang, Wenyi & Wu, Jianjun, 2017. "Overcoming the Downs-Thomson Paradox by transit subsidy policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 126-147.
    9. Hideo Konishi, 2004. "Uniqueness of User Equilibrium in Transportation Networks with Heterogeneous Commuters," Transportation Science, INFORMS, vol. 38(3), pages 315-330, August.
    10. Rapoport, Amnon & Stein, William E. & Mak, Vincent & Zwick, Rami & Seale, Darryl A., 2010. "Endogenous arrivals in batch queues with constant or variable capacity," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1166-1185, December.
    11. Yang, Hai & Tang, Yili, 2018. "Managing rail transit peak-hour congestion with a fare-reward scheme," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 122-136.
    12. Basso, Leonardo J. & Feres, Fernando & Silva, Hugo E., 2019. "The efficiency of bus rapid transit (BRT) systems: A dynamic congestion approach," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 47-71.
    13. Tang, Yili & Jiang, Yu & Yang, Hai & Nielsen, Otto Anker, 2020. "Modeling and optimizing a fare incentive strategy to manage queuing and crowding in mass transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 247-267.
    14. Kraus, Marvin & Yoshida, Yuichiro, 2002. "The Commuter's Time-of-Use Decision and Optimal Pricing and Service in Urban Mass Transit," Journal of Urban Economics, Elsevier, vol. 51(1), pages 170-195, January.
    15. Yang, Hai & Liu, Wei & Wang, Xiaolei & Zhang, Xiaoning, 2013. "On the morning commute problem with bottleneck congestion and parking space constraints," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 106-118.
    16. Vincent van den Berg & Erik T. Verhoef, 2011. "Congesting Pricing in a Road and Rail Network with Heterogeneous Values of Time and Schedule Delay," Tinbergen Institute Discussion Papers 11-059/3, Tinbergen Institute, revised 24 May 2012.
    17. Tirachini, Alejandro, 2014. "The economics and engineering of bus stops: Spacing, design and congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 37-57.
    18. Yoshida, Yuichiro, 2008. "Commuter arrivals and optimal service in mass transit: Does queuing behavior at transit stops matter?," Regional Science and Urban Economics, Elsevier, vol. 38(3), pages 228-251, May.
    19. Li, Zhi-Chun & Zhang, Liping, 2020. "The two-mode problem with bottleneck queuing and transit crowding: How should congestion be priced using tolls and fares?," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 46-76.
    20. Cortina, Mélanie & Chiabaut, Nicolas & Leclercq, Ludovic, 2023. "Fostering synergy between transit and Autonomous Mobility-on-Demand systems: A dynamic modeling approach for the morning commute problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:41:y:2007:i:6:p:616-631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.