IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v143y2021icp177-200.html
   My bibliography  Save this article

Temporal-spatial allocation of bottleneck capacity for managing morning commute with carpool

Author

Listed:
  • Xiao, Ling-Ling
  • Liu, Tian-Liang
  • Huang, Hai-Jun
  • Liu, Ronghui

Abstract

Carpooling as one of demand management measures is effective in reducing highway congestion. Recent studies have shown that an appropriate spatial allocation of bottleneck capacity between carpool lane and general-purpose lane can lead to peak-spread of the morning commuters' departure time and reduce the system's total trip cost. What is not clear however is whether temporal allocation of bottleneck capacity can also be effective and if so, what the impact would be, and furthermore what the combined effects of temporal-spatial allocation of bottleneck capacity would be. This paper investigates the impacts of a temporal allocation of bottleneck capacity, when carpool lane is available only within a reserved time window, and a joint temporal-spatial capacity allocation, on morning commute patterns. User equilibrium commute patterns are derived for both the temporal-only and the joint temporal-spatial capacity allocation schemes, along a highway corridor with two driving modes: solo driving and carpooling. The extra costs associated with carpooling are considered alongside of travel time and schedule delay costs. We identify three different cases representing the relative barriers and attractions of carpooling to commuters, and we show that the optimal capacity allocations are sensitive to the accurate estimation of the commuters' extra carpool cost. To assist in evaluating the difference between a non-optimal and the optimal temporal-spatial allocation schemes, we derive analytically the upper bounds on the efficiency loss and present numerical illustrations on how the upper bounds vary with the different operational and behavioral variables.

Suggested Citation

  • Xiao, Ling-Ling & Liu, Tian-Liang & Huang, Hai-Jun & Liu, Ronghui, 2021. "Temporal-spatial allocation of bottleneck capacity for managing morning commute with carpool," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 177-200.
  • Handle: RePEc:eee:transb:v:143:y:2021:i:c:p:177-200
    DOI: 10.1016/j.trb.2020.11.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261520304379
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2020.11.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Konishi, Hideo & Mun, Se-il, 2010. "Carpooling and congestion pricing: HOV and HOT lanes," Regional Science and Urban Economics, Elsevier, vol. 40(4), pages 173-186, July.
    2. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    3. Nie, Yu (Marco) & Yin, Yafeng, 2013. "Managing rush hour travel choices with tradable credit scheme," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 1-19.
    4. Robin Lindsey, C. & van den Berg, Vincent A.C. & Verhoef, Erik T., 2012. "Step tolling with bottleneck queuing congestion," Journal of Urban Economics, Elsevier, vol. 72(1), pages 46-59.
    5. Yang, Hai & Meng, Qiang & Lee, Der-Horng, 2004. "Trial-and-error implementation of marginal-cost pricing on networks in the absence of demand functions," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 477-493, July.
    6. Koppelman, Frank S. & Bhat, Chandra R. & Schofer, Joseph L., 1993. "Market research evaluation of actions to reduce suburban traffic congestion: Commuter travel behavior and response to demand reduction actions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(5), pages 383-393, September.
    7. Tian, Li-Jun & Sheu, Jiuh-Biing & Huang, Hai-Jun, 2019. "The morning commute problem with endogenous shared autonomous vehicle penetration and parking space constraint," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 258-278.
    8. Menendez, Monica & Daganzo, Carlos F., 2007. "Effects of HOV lanes on freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(8), pages 809-822, October.
    9. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    10. Yu, Xiaojuan & van den Berg, Vincent A.C. & Verhoef, Erik T., 2019. "Carpooling with heterogeneous users in the bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 178-200.
    11. Brown, Anne E., 2020. "Who and where rideshares? Rideshare travel and use in Los Angeles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 120-134.
    12. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1990. "Economics of a bottleneck," Journal of Urban Economics, Elsevier, vol. 27(1), pages 111-130, January.
    13. Hall, Jonathan D., 2018. "Pareto improvements from Lexus Lanes: The effects of pricing a portion of the lanes on congested highways," Journal of Public Economics, Elsevier, vol. 158(C), pages 113-125.
    14. Ma, Rui & Zhang, H.M., 2017. "The morning commute problem with ridesharing and dynamic parking charges," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 345-374.
    15. Xiao, Feng & Shen, Wei & Michael Zhang, H., 2012. "The morning commute under flat toll and tactical waiting," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1346-1359.
    16. Zhong, Lin & Zhang, Kenan & (Marco) Nie, Yu & Xu, Jiuping, 2020. "Dynamic carpool in morning commute: Role of high-occupancy-vehicle (HOV) and high-occupancy-toll (HOT) lanes," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 98-119.
    17. Fosgerau, Mogens, 2011. "How a fast lane may replace a congestion toll," Transportation Research Part B: Methodological, Elsevier, vol. 45(6), pages 845-851, July.
    18. Wu, Wen-Xiang & Huang, Hai-Jun, 2015. "An ordinary differential equation formulation of the bottleneck model with user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 34-58.
    19. Wang, Jing-Peng & Ban, Xuegang (Jeff) & Huang, Hai-Jun, 2019. "Dynamic ridesharing with variable-ratio charging-compensation scheme for morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 390-415.
    20. Monchambert, Guillaume, 2020. "Why do (or don’t) people carpool for long distance trips? A discrete choice experiment in France," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 911-931.
    21. Laih, Chen-Hsiu, 1994. "Queueing at a bottleneck with single- and multi-step tolls," Transportation Research Part A: Policy and Practice, Elsevier, vol. 28(3), pages 197-208, May.
    22. Yang Liu & Yu (Marco) Nie, 2017. "A Credit-Based Congestion Management Scheme in General Two-Mode Networks with Multiclass Users," Networks and Spatial Economics, Springer, vol. 17(3), pages 681-711, September.
    23. Xu, Da & Guo, Xiaolei & Zhang, Guoqing, 2019. "Constrained optimization for bottleneck coarse tolling," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 1-22.
    24. Xiao, Ling-Ling & Liu, Tian-Liang & Huang, Hai-Jun, 2016. "On the morning commute problem with carpooling behavior under parking space constraint," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 383-407.
    25. Yang, Hai & Huang, Hai-Jun, 1999. "Carpooling and congestion pricing in a multilane highway with high-occupancy-vehicle lanes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(2), pages 139-155, February.
    26. Chen, Hongyu & Liu, Yang & Nie, Yu (Marco), 2015. "Solving the step-tolled bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 210-229.
    27. Dahlgren, Joy, 1998. "High occupancy vehicle lanes: Not always more effective than general purpose lanes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(2), pages 99-114, February.
    28. Hai-Jun Huang & Hai Yang & Michael G.H. Bell, 2000. "The models and economics of carpools," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 34(1), pages 55-68.
    29. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    30. Feng Xiao & Zhen Qian & H. Zhang, 2011. "The Morning Commute Problem with Coarse Toll and Nonidentical Commuters," Networks and Spatial Economics, Springer, vol. 11(2), pages 343-369, June.
    31. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2017. "Step tolling in an activity-based bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 306-334.
    32. Chen-Hsiu Laih, 2004. "Effects of the optimal step toll scheme on equilibrium commuter behaviour," Applied Economics, Taylor & Francis Journals, vol. 36(1), pages 59-81.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Senlai Zhu & Hantao Yu & Congjun Fan, 2024. "Travel Plan Sharing and Regulation for Managing Traffic Bottleneck Based on Blockchain Technology," Sustainability, MDPI, vol. 16(4), pages 1-20, February.
    2. Zhang, Xiang & Liu, Wei & Levin, Michael & Travis Waller, S., 2023. "Equilibrium analysis of morning commuting and parking under spatial capacity allocation in the autonomous vehicle environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    3. Xing, Jiping & Wu, Wei & Cheng, Qixiu & Liu, Ronghui, 2022. "Traffic state estimation of urban road networks by multi-source data fusion: Review and new insights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    2. Vincent van den Berg, "undated". "Self-financing roads under coarse tolling and heterogeneous preferences," Tinbergen Institute Discussion Papers 22-045/VIII, Tinbergen Institute.
    3. Zhu, Tingting & Li, Yao & Long, Jiancheng, 2022. "Departure time choice equilibrium and tolling strategies for a bottleneck with continuous scheduling preference," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    4. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2017. "Step tolling in an activity-based bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 306-334.
    5. van den Berg, Vincent A.C., 2014. "Coarse tolling with heterogeneous preferences," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 1-23.
    6. Takayama, Yuki, 2020. "Who gains and who loses from congestion pricing in a monocentric city with a bottleneck?," Economics of Transportation, Elsevier, vol. 24(C).
    7. Xiao, Ling-Ling & Liu, Tian-Liang & Huang, Hai-Jun, 2016. "On the morning commute problem with carpooling behavior under parking space constraint," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 383-407.
    8. Chen, Hongyu & Nie, Yu (Marco) & Yin, Yafeng, 2015. "Optimal multi-step toll design under general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 775-793.
    9. Yang, Hai & Tang, Yili, 2018. "Managing rail transit peak-hour congestion with a fare-reward scheme," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 122-136.
    10. Long, Jiancheng & Szeto, W.Y., 2019. "Congestion and environmental toll schemes for the morning commute with heterogeneous users and parallel routes," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 305-333.
    11. Wu, Jiyan & Tian, Ye & Sun, Jian, 2023. "Managing ridesharing with incentives in a bottleneck model," Research in Transportation Economics, Elsevier, vol. 101(C).
    12. Deng, Yao & Sheng, Dian & Liu, Baoli, 2021. "Managing ship lock congestion in an inland waterway: A bottleneck model with a service time window," Transport Policy, Elsevier, vol. 112(C), pages 142-161.
    13. Ling-Ling Xiao & Tian-Liang Liu & Hai-Jun Huang, 2021. "Tradable permit schemes for managing morning commute with carpool under parking space constraint," Transportation, Springer, vol. 48(4), pages 1563-1586, August.
    14. Senlai Zhu & Hantao Yu & Congjun Fan, 2024. "Travel Plan Sharing and Regulation for Managing Traffic Bottleneck Based on Blockchain Technology," Sustainability, MDPI, vol. 16(4), pages 1-20, February.
    15. Yu, Xiaojuan & van den Berg, Vincent A.C. & Verhoef, Erik T., 2019. "Carpooling with heterogeneous users in the bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 178-200.
    16. Takayama, Yuki & Kuwahara, Masao, 2017. "Bottleneck congestion and residential location of heterogeneous commuters," Journal of Urban Economics, Elsevier, vol. 100(C), pages 65-79.
    17. Knockaert, Jasper & Verhoef, Erik T. & Rouwendal, Jan, 2016. "Bottleneck congestion: Differentiating the coarse charge," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 59-73.
    18. Zhong, Lin & Zhang, Kenan & (Marco) Nie, Yu & Xu, Jiuping, 2020. "Dynamic carpool in morning commute: Role of high-occupancy-vehicle (HOV) and high-occupancy-toll (HOT) lanes," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 98-119.
    19. Takayama, Yuki, 2018. "Time-varying congestion tolling and urban spatial structure," MPRA Paper 89896, University Library of Munich, Germany.
    20. Fu, Yulan & Wang, Chenlan & Liu, Tian-Liang & Huang, Hai-Jun, 2021. "Parking management in the morning commute problem with ridesharing," Research in Transportation Economics, Elsevier, vol. 90(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:143:y:2021:i:c:p:177-200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.