IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v33y2014icp128-140.html
   My bibliography  Save this article

A new approach to model and forecast volatility based on extreme value of asset prices

Author

Listed:
  • Kumar, Dilip
  • Maheswaran, S.

Abstract

Based on the specification of the Conditional Autoregressive Range (CARR) model, we provide a framework that makes use of volatility based on the high and the low of daily prices separately to model the dynamic behavior of the conditional Rogers and Satchell (1991) estimator called herein the Conditional Autoregressive Rogers and Satchell (CARRS) model. We assess the performance of the CARRS model for forecasting daily realized volatility (estimated based on high frequency data) using loss functions, the regression test and the superior predictive ability test and compare them with forecasting performance of alternative models. Our results indicate that the CARRS model exhibits superior forecasting performance when compared to alternative models.

Suggested Citation

  • Kumar, Dilip & Maheswaran, S., 2014. "A new approach to model and forecast volatility based on extreme value of asset prices," International Review of Economics & Finance, Elsevier, vol. 33(C), pages 128-140.
  • Handle: RePEc:eee:reveco:v:33:y:2014:i:c:p:128-140
    DOI: 10.1016/j.iref.2014.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056014000665
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2014.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Hongquan & Hong, Yongmiao, 2011. "Financial volatility forecasting with range-based autoregressive volatility model," Finance Research Letters, Elsevier, vol. 8(2), pages 69-76, June.
    2. Kao, Lie-Jane & Wu, Po-Cheng & Lee, Cheng-Few, 2012. "Time-changed GARCH versus the GARJI model for prediction of extreme news events: An empirical study," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 115-129.
    3. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    4. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    5. Liu, Hung-Chun & Chiang, Shu-Mei & Cheng, Nick Ying-Pin, 2012. "Forecasting the volatility of S&P depositary receipts using GARCH-type models under intraday range-based and return-based proxy measures," International Review of Economics & Finance, Elsevier, vol. 22(1), pages 78-91.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    8. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    9. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    10. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    11. Chou, Ray Yeutien, 2005. "Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 561-582, June.
    12. Clive W. J. Granger, 2002. "Some comments on risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 447-456.
    13. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    14. Aizenman, Joshua & Marion, Nancy, 1999. "Volatility and Investment: Interpreting Evidence from Developing Countries," Economica, London School of Economics and Political Science, vol. 66(262), pages 157-179, May.
    15. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
    16. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    17. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    18. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    19. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    20. Kumar, Dilip & Maheswaran, S., 2013. "Detecting sudden changes in volatility estimated from high, low and closing prices," Economic Modelling, Elsevier, vol. 31(C), pages 484-491.
    21. Brandt, Michael W. & Jones, Christopher S., 2006. "Volatility Forecasting With Range-Based EGARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 470-486, October.
    22. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    23. Yang, Dennis & Zhang, Qiang, 2000. "Drift-Independent Volatility Estimation Based on High, Low, Open, and Close Prices," The Journal of Business, University of Chicago Press, vol. 73(3), pages 477-491, July.
    24. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    25. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan, Shay-Kee & Ng, Kok-Haur & Chan, Jennifer So-Kuen & Mohamed, Ibrahim, 2019. "Quantile range-based volatility measure for modelling and forecasting volatility using high frequency data," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 537-551.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Dilip, 2015. "Sudden changes in extreme value volatility estimator: Modeling and forecasting with economic significance analysis," Economic Modelling, Elsevier, vol. 49(C), pages 354-371.
    2. Dilip Kumar, 2016. "Sudden changes in crude oil price volatility: an application of extreme value volatility estimator," American Journal of Finance and Accounting, Inderscience Enterprises Ltd, vol. 4(3/4), pages 215-234.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
    5. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
    6. Dilip Kumar, 2018. "Modeling and Forecasting Unbiased Extreme Value Volatility Estimator in Presence of Leverage Effect," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(2), pages 313-335, June.
    7. Prateek Sharma & Vipul _, 2015. "Forecasting stock index volatility with GARCH models: international evidence," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 32(4), pages 445-463, October.
    8. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    9. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    10. Richard D. F. Harris & Murat Mazibas, 2022. "A component Markov regime‐switching autoregressive conditional range model," Bulletin of Economic Research, Wiley Blackwell, vol. 74(2), pages 650-683, April.
    11. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
    12. Tan, Shay-Kee & Ng, Kok-Haur & Chan, Jennifer So-Kuen & Mohamed, Ibrahim, 2019. "Quantile range-based volatility measure for modelling and forecasting volatility using high frequency data," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 537-551.
    13. Fiszeder, Piotr & Fałdziński, Marcin, 2019. "Improving forecasts with the co-range dynamic conditional correlation model," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
    14. Piotr Fiszeder & Grzegorz Perczak, 2013. "A new look at variance estimation based on low, high and closing prices taking into account the drift," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(4), pages 456-481, November.
    15. Kumar, Dilip & Maheswaran, S., 2014. "Modeling and forecasting the additive bias corrected extreme value volatility estimator," International Review of Financial Analysis, Elsevier, vol. 34(C), pages 166-176.
    16. Dilip Kumar, 2016. "Estimating and forecasting value-at-risk using the unbiased extreme value volatility estimator," Proceedings of Economics and Finance Conferences 3205528, International Institute of Social and Economic Sciences.
    17. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    18. Marcin Fałdziński & Piotr Fiszeder & Witold Orzeszko, 2020. "Forecasting Volatility of Energy Commodities: Comparison of GARCH Models with Support Vector Regression," Energies, MDPI, vol. 14(1), pages 1-18, December.
    19. Antonakakis, Nikolaos & Darby, Julia, 2012. "Forecasting Volatility in Developing Countries' Nominal Exchange Returns," MPRA Paper 40875, University Library of Munich, Germany.
    20. Tomasz Skoczylas, 2013. "Modelowanie i prognozowanie zmienności przy użyciu modeli opartych o zakres wahań," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 35.

    More about this item

    Keywords

    CARRS model; Rogers and Satchell (RS) estimator; Forecast evaluation; Volatility modeling; Generalized autoregressive conditional heteroskedasticity (GARCH) model;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:33:y:2014:i:c:p:128-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.