Advanced Search
MyIDEAS: Login to save this paper or follow this series

High-Frequency and Model-Free Volatility Estimators

Contents:

Author Info

  • Robert Ślepaczuk

    ()
    (Faculty of Economic Sciences, University of Warsaw)

  • Grzegorz Zakrzewski

    (Deutsche Bank PBC S.A.)

Abstract

This paper focuses on volatility of financial markets, which is one of the most important issues in finance, especially with regard to modeling high-frequency data. Risk management, asset pricing and option valuation techniques are the areas where the concept of volatility estimators (consistent, unbiased and the most efficient) is of crucial concern. Our intention was to find the best estimator of true volatility taking into account the latest investigations in finance literature. Basing on the methodology presented in Parkinson (1980), Garman and Klass (1980), Rogers and Satchell (1991), Yang and Zhang (2000), Andersen et al. (1997, 1998, 1999a, 199b), Hansen and Lunde (2005, 2006b) and Martens (2007), we computed the various model-free volatility estimators and compared them with classical volatility estimator, most often used in financial models. In order to reveal the information set hidden in high-frequency data, we utilized the concept of realized volatility and realized range. Calculating our estimator, we carefully focused on Δ (the interval used in calculation), n (the memory of the process) and q (scaling factor for scaled estimators). Our results revealed that the appropriate selection of Δ and n plays a crucial role when we try to answer the question concerning the estimator efficiency, as well as its accuracy. Having nine estimators of volatility, we found that for optimal n (measured in days) and Δ (in minutes) we obtain the most efficient estimator. Our findings confirmed that the best estimator should include information contained not only in closing prices but in the price range as well (range estimators). What is more important, we focused on the properties of the formula itself, independently of the interval used, comparing the estimator with the same Δ, n and q parameter. We observed that the formula of volatility estimator is not as important as the process of selection of the optimal parameter n or Δ. Finally, we focused on the asymmetry between market turmoil and adjustments of volatility. Next, we put stress on the implications of our results for well-known financial models which utilize classical volatility estimator as the main input variable.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.wne.uw.edu.pl/inf/wyd/WP/WNE_WP23.pdf
File Function: First version, 2009
Download Restriction: no

Bibliographic Info

Paper provided by Faculty of Economic Sciences, University of Warsaw in its series Working Papers with number 2009-13.

as in new window
Length: 36 pages
Date of creation: 2009
Date of revision:
Handle: RePEc:war:wpaper:2009-13

Contact details of provider:
Postal: ul. Dluga 44/50, 00-241 Warszawa
Phone: (+48 22) 55 49 144
Fax: (+48 22) 831 28 46
Email:
Web page: http://www.wne.uw.edu.pl/
More information through EDIRC

Related research

Keywords: financial market volatility; high-frequency financial data; realized volatility and correlation; volatility forecasting; microstructure bias; the opening jump effect; the bid-ask bounce; autocovariance bias; daily patterns of volatility; emerging markets;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2004. "Regular and Modified Kernel-Based Estimators of Integrated Variance: The Case with Independent Noise," Economics Papers 2004-W28, Economics Group, Nuffield College, University of Oxford.
  2. John Y. Campbell & Ludger Hentschel, 1991. "No News is Good News: An Asymmetric Model of Changing Volatility in Stock Returns," NBER Working Papers 3742, National Bureau of Economic Research, Inc.
  3. Giot,Pierre & Laurent,Sebastien, 2001. "Modelling daily value-at-risk using realized volatility and arch type models," Research Memorandum 014, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  4. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
  5. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  6. Adrian R. Pagan & G. William Schwert, 1990. "Alternative Models For Conditional Stock Volatility," NBER Working Papers 2955, National Bureau of Economic Research, Inc.
  7. Becker, Ralf & Clements, Adam E. & White, Scott I., 2006. "On the informational efficiency of S&P500 implied volatility," The North American Journal of Economics and Finance, Elsevier, vol. 17(2), pages 139-153, August.
  8. Michael W. Brandt & Francis X. Diebold, 2006. "A No-Arbitrage Approach to Range-Based Estimation of Return Covariances and Correlations," The Journal of Business, University of Chicago Press, vol. 79(1), pages 61-74, January.
  9. Martens, Martin & van Dijk, Dick, 2007. "Measuring volatility with the realized range," Journal of Econometrics, Elsevier, vol. 138(1), pages 181-207, May.
  10. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-47, August.
  11. Peter Reinhard Hansen & Asger Lunde, 2005. "A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(4), pages 525-554.
  12. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  13. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  14. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
  15. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
  16. Roel C.A. OOMEN, 2001. "Using high frequency stock market index data to calculate, model and forecast realized return variance," Economics Working Papers ECO2001/06, European University Institute.
  17. Brailsford, Timothy J. & Faff, Robert W., 1996. "An evaluation of volatility forecasting techniques," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 419-438, April.
  18. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  19. Taylor, Stephen J. & Xu, Xinzhong, 1997. "The incremental volatility information in one million foreign exchange quotations," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 317-340, December.
  20. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
  21. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
  22. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
  23. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
  24. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  25. Barone-Adesi, Giovanni & Whaley, Robert E, 1987. " Efficient Analytic Approximation of American Option Values," Journal of Finance, American Finance Association, vol. 42(2), pages 301-20, June.
  26. Robert C. Merton, 1973. "Theory of Rational Option Pricing," Bell Journal of Economics, The RAND Corporation, vol. 4(1), pages 141-183, Spring.
  27. Athanasia Gavala & Nikolay Gospodinov & Deming Jiang, 2006. "Forecasting volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 381-400.
  28. Christensen, Kim & Podolskij, Mark, 2007. "Realized range-based estimation of integrated variance," Journal of Econometrics, Elsevier, vol. 141(2), pages 323-349, December.
  29. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
  30. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  31. Gurdip Bakshi & Nikunj Kapadia & Dilip Madan, 2003. "Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options," Review of Financial Studies, Society for Financial Studies, vol. 16(1), pages 101-143.
  32. Andersen, Torben G, 2000. "Some Reflections on Analysis of High-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 146-53, April.
  33. Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
  34. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
  35. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
  36. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range-Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, 06.
  37. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
  38. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
  39. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
  40. Yang, Dennis & Zhang, Qiang, 2000. "Drift-Independent Volatility Estimation Based on High, Low, Open, and Close Prices," The Journal of Business, University of Chicago Press, vol. 73(3), pages 477-91, July.
  41. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Ryszard Kokoszczyński & Natalia Nehrebecka & Paweł Sakowski & Paweł Strawiński & Robert Ślepaczuk, 2010. "Option Pricing Models with HF Data – a Comparative Study. The Properties of Black Model with Different Volatility Measures," Working Papers 2010-03, Faculty of Economic Sciences, University of Warsaw.
  2. Robert Ślepaczuk & Grzegorz Zakrzewski & Paweł Sakowski, 2012. "Investment strategies beating the market. What can we squeeze from the market?," Working Papers 2012-04, Faculty of Economic Sciences, University of Warsaw.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:war:wpaper:2009-13. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marcin Bąba).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.