IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v95y2018icp242-253.html
   My bibliography  Save this article

Public preferences for biomass electricity in China

Author

Listed:
  • Zhao, Xiaoli
  • Cai, Qiong
  • Li, Shujie
  • Ma, Chunbo

Abstract

The Chinese government has made significant effort to promote biomass based electricity generation in recent years. Yet, little is known about consumers’ preferences for biomass electricity and associated environmental impacts. This paper uses discrete choice experiments (DCE) to investigate Chinese consumers’ preference for electricity generated from various biomass sources. Based on 548 responses, the paper finds that Chinese households are willing to pay a premium of around 27 Yuan per month or 0.20 Yuan per kilowatt hour (kWh) to replace coal-fired electricity. Among the various biomass sources, electricity generated from agricultural and forestry biomass is most preferred, followed by biogas electricity and waste-to-energy. It is also found that respondents have a significant willingness to pay for reducing haze. Consumers’ household structure and environmental awareness also affect their preference for biomass electricity. These results have significant implications for the prioritization, design and communication of biomass promoting schemes.

Suggested Citation

  • Zhao, Xiaoli & Cai, Qiong & Li, Shujie & Ma, Chunbo, 2018. "Public preferences for biomass electricity in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 242-253.
  • Handle: RePEc:eee:rensus:v:95:y:2018:i:c:p:242-253
    DOI: 10.1016/j.rser.2018.07.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118305306
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.07.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, Jaswinder, 2015. "Overview of electric power potential of surplus agricultural biomass from economic, social, environmental and technical perspective—A case study of Punjab," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 286-297.
    2. Kosenius, Anna-Kaisa & Ollikainen, Markku, 2013. "Valuation of environmental and societal trade-offs of renewable energy sources," Energy Policy, Elsevier, vol. 62(C), pages 1148-1156.
    3. Gracia, Azucena & Barreiro-Hurlé, Jesús & Pérez y Pérez, Luis, 2012. "Can renewable energy be financed with higher electricity prices? Evidence from a Spanish region," Energy Policy, Elsevier, vol. 50(C), pages 784-794.
    4. Tampakis, Stilianos & Arabatzis, Garyfallos & Tsantopoulos, Georgios & Rerras, Ioannis, 2017. "Citizens’ views on electricity use, savings and production from renewable energy sources: A case study from a Greek island," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 39-49.
    5. Arabatzis, Garyfallos & Malesios, Chrisovalantis, 2013. "Pro-environmental attitudes of users and non-users of fuelwood in a rural area of Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 621-630.
    6. Hassan, Md. Kamrul & Pelkonen, Paavo & Pappinen, Ari, 2014. "Rural households’ knowledge and perceptions of renewables with special attention on bioenergy resources development – Results from a field study in Bangladesh," Applied Energy, Elsevier, vol. 136(C), pages 454-464.
    7. Borchers, Allison M. & Duke, Joshua M. & Parsons, George R., 2007. "Does willingness to pay for green energy differ by source?," Energy Policy, Elsevier, vol. 35(6), pages 3327-3334, June.
    8. Ladenburg, Jacob & Olsen, Søren Bøye, 2014. "Augmenting short Cheap Talk scripts with a repeated Opt-Out Reminder in Choice Experiment surveys," Resource and Energy Economics, Elsevier, vol. 37(C), pages 39-63.
    9. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    10. Longo, Alberto & Markandya, Anil & Petrucci, Marta, 2008. "The internalization of externalities in the production of electricity: Willingness to pay for the attributes of a policy for renewable energy," Ecological Economics, Elsevier, vol. 67(1), pages 140-152, August.
    11. Hanley, Nick & Nevin, Ceara, 1999. "Appraising renewable energy developments in remote communities: the case of the North Assynt Estate, Scotland," Energy Policy, Elsevier, vol. 27(9), pages 527-547, September.
    12. Ma, Chunbo & Burton, Michael, 2016. "Warm glow from green power: Evidence from Australian electricity consumers," Journal of Environmental Economics and Management, Elsevier, vol. 78(C), pages 106-120.
    13. Varela, Elsa & Mahieu, Pierre-Alexandre & Giergiczny, Marek & Riera, Pere & Soliño, Mario, 2014. "Testing the single opt-out reminder in choice experiments: An application to fuel break management in Spain," Journal of Forest Economics, Elsevier, vol. 20(3), pages 212-222.
    14. Ma, Chunbo & Zhao, Xiaoli, 2015. "China's electricity market restructuring and technology mandates: Plant-level evidence for changing operational efficiency," Energy Economics, Elsevier, vol. 47(C), pages 227-237.
    15. Lee, Joo-Suk & Yoo, Seung-Hoon, 2009. "Measuring the environmental costs of tidal power plant construction: A choice experiment study," Energy Policy, Elsevier, vol. 37(12), pages 5069-5074, December.
    16. Ian J. Bateman & Richard T. Carson & Brett Day & Michael Hanemann & Nick Hanley & Tannis Hett & Michael Jones-Lee & Graham Loomes, 2002. "Economic Valuation with Stated Preference Techniques," Books, Edward Elgar Publishing, number 2639.
    17. Ma, Chunbo & Rogers, Abbie A. & Kragt, Marit E. & Zhang, Fan & Polyakov, Maksym & Gibson, Fiona & Chalak, Morteza & Pandit, Ram & Tapsuwan, Sorada, 2015. "Consumers’ willingness to pay for renewable energy: A meta-regression analysis," Resource and Energy Economics, Elsevier, vol. 42(C), pages 93-109.
    18. Vollebergh, Herman, 1997. "Environmental externalities and social optimality in biomass markets: waste-to-energy in The Netherlands and biofuels in France," Energy Policy, Elsevier, vol. 25(6), pages 605-621, May.
    19. Hess, S. & Bierlaire, Michel & Polak, J.W., 2007. "A systematic comparison of continuous and discrete mixture models," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 37, pages 35-61.
    20. Schaafsma, Marije & Brouwer, Roy & Liekens, Inge & De Nocker, Leo, 2014. "Temporal stability of preferences and willingness to pay for natural areas in choice experiments: A test–retest," Resource and Energy Economics, Elsevier, vol. 38(C), pages 243-260.
    21. Laura O. Taylor & Ronald G. Cummings, 1999. "Unbiased Value Estimates for Environmental Goods: A Cheap Talk Design for the Contingent Valuation Method," American Economic Review, American Economic Association, vol. 89(3), pages 649-665, June.
    22. Lim, Seul-Ye & Lim, Kyoung-Min & Yoo, Seung-Hoon, 2014. "External benefits of waste-to-energy in Korea: A choice experiment study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 588-595.
    23. Carlsson, Fredrik & Frykblom, Peter & Johan Lagerkvist, Carl, 2005. "Using cheap talk as a test of validity in choice experiments," Economics Letters, Elsevier, vol. 89(2), pages 147-152, November.
    24. Sundt, Swantje & Rehdanz, Katrin, 2015. "Consumers' willingness to pay for green electricity: A meta-analysis of the literature," Energy Economics, Elsevier, vol. 51(C), pages 1-8.
    25. Hanemann, W. Michael, 1983. "Marginal welfare measures for discrete choice models," Economics Letters, Elsevier, vol. 13(2-3), pages 129-136.
    26. Zhang, Chi & Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2017. "On electricity consumption and economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 353-368.
    27. Varela, Elsa & Jacobsen, Jette Bredahl & Soliño, Mario, 2014. "Understanding the heterogeneity of social preferences for fire prevention management," Ecological Economics, Elsevier, vol. 106(C), pages 91-104.
    28. Campbell, Robert M. & Venn, Tyron J. & Anderson, Nathaniel M., 2018. "Heterogeneity in Preferences for Woody Biomass Energy in the US Mountain West," Ecological Economics, Elsevier, vol. 145(C), pages 27-37.
    29. Cosmi, C. & Macchiato, M. & Mangiamele, L. & Marmo, G. & Pietrapertosa, F. & Salvia, M., 2003. "Environmental and economic effects of renewable energy sources use on a local case study," Energy Policy, Elsevier, vol. 31(5), pages 443-457, April.
    30. Susaeta, Andres & Lal, Pankaj & Alavalapati, Janaki & Mercer, Evan, 2011. "Random preferences towards bioenergy environmental externalities: A case study of woody biomass based electricity in the Southern United States," Energy Economics, Elsevier, vol. 33(6), pages 1111-1118.
    31. Cicia, Gianni & Cembalo, Luigi & Del Giudice, Teresa & Palladino, Andrea, 2012. "Fossil energy versus nuclear, wind, solar and agricultural biomass: Insights from an Italian national survey," Energy Policy, Elsevier, vol. 42(C), pages 59-66.
    32. Krinsky, Itzhak & Robb, A Leslie, 1986. "On Approximating the Statistical Properties of Elasticities," The Review of Economics and Statistics, MIT Press, vol. 68(4), pages 715-719, November.
    33. Solomon, Barry D. & Johnson, Nicholas H., 2009. "Valuing climate protection through willingness to pay for biomass ethanol," Ecological Economics, Elsevier, vol. 68(7), pages 2137-2144, May.
    34. Guo, Xiurui & Liu, Haifeng & Mao, Xianqiang & Jin, Jianjun & Chen, Dongsheng & Cheng, Shuiyuan, 2014. "Willingness to pay for renewable electricity: A contingent valuation study in Beijing, China," Energy Policy, Elsevier, vol. 68(C), pages 340-347.
    35. Soliño, Mario & Farizo, Begoña A. & Vázquez, María X. & Prada, Albino, 2012. "Generating electricity with forest biomass: Consistency and payment timeframe effects in choice experiments," Energy Policy, Elsevier, vol. 41(C), pages 798-806.
    36. Aravena, Claudia & Hutchinson, W. George & Longo, Alberto, 2012. "Environmental pricing of externalities from different sources of electricity generation in Chile," Energy Economics, Elsevier, vol. 34(4), pages 1214-1225.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Hyunggeun & Park, Sangkyu & Lee, Jongsu, 2021. "Is renewable energy acceptable with power grid expansion? A quantitative study of South Korea's renewable energy acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Jayarathna, Lasinidu & Kent, Geoff & O’Hara, Ian & Hobson, Philip, 2022. "Geographical information system based fuzzy multi criteria analysis for sustainability assessment of biomass energy plant siting: A case study in Queensland, Australia," Land Use Policy, Elsevier, vol. 114(C).
    3. Qi, Qi & Long, Chao & Wu, Jianzhong & Yu, James, 2018. "Impacts of a medium voltage direct current link on the performance of electrical distribution networks," Applied Energy, Elsevier, vol. 230(C), pages 175-188.
    4. Jiang, Lu & Xue, Bing & Ma, Zhixiao & Yu, Lu & Huang, Beijia & Chen, Xingpeng, 2020. "A life-cycle based co-benefits analysis of biomass pellet production in China," Renewable Energy, Elsevier, vol. 154(C), pages 445-452.
    5. Kim, Ju-Hee & Kim, Hee-Hoon & Yoo, Seung-Hoon, 2022. "Social acceptance toward constructing a combined heat and power plant near people's dwellings in South Korea," Energy, Elsevier, vol. 244(PB).
    6. Obara, Shin'ya & Hamanaka, Ryo & El-Sayed, Abeer Galal, 2019. "Design methods for microgrids to address seasonal energy availability – A case study of proposed Showa Antarctic Station retrofits," Applied Energy, Elsevier, vol. 236(C), pages 711-727.
    7. Wajahat Ullah Khan Tareen & Zuha Anjum & Nabila Yasin & Leenah Siddiqui & Ifzana Farhat & Suheel Abdullah Malik & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Mohamed Darwish & Muhammad Aamir &, 2018. "The Prospective Non-Conventional Alternate and Renewable Energy Sources in Pakistan—A Focus on Biomass Energy for Power Generation, Transportation, and Industrial Fuel," Energies, MDPI, vol. 11(9), pages 1-49, September.
    8. Hu, Xu & Yang, Zhaojun & Sun, Jun & Zhang, Yali, 2021. "Sharing economy of electric vehicle private charge posts," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 258-275.
    9. Gaigalis, Vygandas & Katinas, Vladislovas, 2020. "Analysis of the renewable energy implementation and prediction prospects in compliance with the EU policy: A case of Lithuania," Renewable Energy, Elsevier, vol. 151(C), pages 1016-1027.
    10. Ugarte Lucas, Paula & Gamborg, Christian & Lund, Thomas Bøker, 2022. "Sustainability concerns are key to understanding public attitudes toward woody biomass for energy: A survey of Danish citizens," Renewable Energy, Elsevier, vol. 194(C), pages 181-194.
    11. Kim, Ju-Hee & Lim, Seul-Ye & Yoo, Seung-Hoon, 2021. "Public preferences for introducing a power-to-heat system in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    12. Bakkensen, Laura & Schuler, Paul, 2020. "A preference for power: Willingness to pay for energy reliability versus fuel type in Vietnam," Energy Policy, Elsevier, vol. 144(C).
    13. Fabián Almonacid, 2018. "Bioenergy in an Agroforestry Economy under Crisis: Complement and Conflict. La Araucanía, Chile, 1990–2016," Sustainability, MDPI, vol. 10(12), pages 1-19, November.
    14. Kim, Hyo-Jin & Kim, Ju-Hee & Yoo, Seung-Hoon, 2019. "Social acceptance of offshore wind energy development in South Korea: Results from a choice experiment survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    15. Heredia, Willy Bernal & Chaudhari, Kalpesh & Meintz, Andrew & Jun, Myungsoo & Pless, Shanti, 2020. "Evaluation of smart charging for electric vehicle-to-building integration: A case study," Applied Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oerlemans, Leon A.G. & Chan, Kai-Ying & Volschenk, Jako, 2016. "Willingness to pay for green electricity: A review of the contingent valuation literature and its sources of error," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 875-885.
    2. Bakkensen, Laura & Schuler, Paul, 2020. "A preference for power: Willingness to pay for energy reliability versus fuel type in Vietnam," Energy Policy, Elsevier, vol. 144(C).
    3. Zhao, Xiaoli & Cai, Qiong & Ma, Chunbo & Hu, Yanan & Luo, Kaiyan & Li, William, 2017. "Economic evaluation of environmental externalities in China’s coal-fired power generation," Energy Policy, Elsevier, vol. 102(C), pages 307-317.
    4. Martínez-Cruz, Adán L. & Núñez, Héctor M., 2021. "Tension in Mexico's energy transition: Are urban residential consumers in Aguascalientes willing to pay for renewable energy and green jobs?," Energy Policy, Elsevier, vol. 150(C).
    5. Soon, Jan-Jan & Ahmad, Siti-Aznor, 2015. "Willingly or grudgingly? A meta-analysis on the willingness-to-pay for renewable energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 877-887.
    6. Dalia Streimikiene & Tomas Balezentis & Ilona Alisauskaite-Seskiene & Gintare Stankuniene & Zaneta Simanaviciene, 2019. "A Review of Willingness to Pay Studies for Climate Change Mitigation in the Energy Sector," Energies, MDPI, vol. 12(8), pages 1-38, April.
    7. Gianluca Grilli, 2017. "Renewable energy and willingness to pay: Evidences from a meta-analysis," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2017(1-2), pages 253-271.
    8. Sauthoff, Saramena & Danne, Michael & Mußhoff, Oliver, 2017. "To switch or not to switch? – Understanding German consumers’ willingness to pay for green electricity tariff attributes," Department of Agricultural and Rural Development (DARE) Discussion Papers 260771, Georg-August-Universitaet Goettingen, Department of Agricultural Economics and Rural Development (DARE).
    9. Ma, Chunbo & Rogers, Abbie A. & Kragt, Marit E. & Zhang, Fan & Polyakov, Maksym & Gibson, Fiona & Chalak, Morteza & Pandit, Ram & Tapsuwan, Sorada, 2015. "Consumers’ willingness to pay for renewable energy: A meta-regression analysis," Resource and Energy Economics, Elsevier, vol. 42(C), pages 93-109.
    10. Mattmann, Matteo & Logar, Ivana & Brouwer, Roy, 2016. "Hydropower externalities: A meta-analysis," Energy Economics, Elsevier, vol. 57(C), pages 66-77.
    11. Alló, Maria & Loureiro, Maria L., 2014. "The role of social norms on preferences towards climate change policies: A meta-analysis," Energy Policy, Elsevier, vol. 73(C), pages 563-574.
    12. Ladenburg, Jacob, 2014. "Dynamic properties of the preferences for renewable energy sources – A wind power experience-based approach," Energy, Elsevier, vol. 76(C), pages 542-551.
    13. Cardella, Eric & Ewing, Brad & Williams, Ryan Blake, 2018. "Green is Good – The Impact of Information Nudges on the Adoption of Voluntary Green Power Plans," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266583, Southern Agricultural Economics Association.
    14. Bae, Jeong Hwan & Rishi, Meenakshi & Li, Dmitriy, 2021. "Consumer preferences for a green certificate program in South Korea," Energy, Elsevier, vol. 230(C).
    15. Vecchiato, Daniel & Tempesta, Tiziano, 2015. "Public preferences for electricity contracts including renewable energy: A marketing analysis with choice experiments," Energy, Elsevier, vol. 88(C), pages 168-179.
    16. Sundt, Swantje & Rehdanz, Katrin, 2015. "Consumers' willingness to pay for green electricity: A meta-analysis of the literature," Energy Economics, Elsevier, vol. 51(C), pages 1-8.
    17. Demel, Simona & Longo, Alberto & Mariel, Petr, 2020. "Trading off visual disamenity for renewable energy: Willingness to pay for seaweed farming for energy production," Ecological Economics, Elsevier, vol. 173(C).
    18. Cardella, Eric & Ewing, Bradley T. & Williams, Ryan B., 2017. "Price volatility and residential electricity decisions: Experimental evidence on the convergence of energy generating source," Energy Economics, Elsevier, vol. 62(C), pages 428-437.
    19. Byun, Hyunsuk & Lee, Chul-Yong, 2017. "Analyzing Korean consumers’ latent preferences for electricity generation sources with a hierarchical Bayesian logit model in a discrete choice experiment," Energy Policy, Elsevier, vol. 105(C), pages 294-302.
    20. Herbes, Carsten & Friege, Christian & Baldo, Davide & Mueller, Kai-Markus, 2015. "Willingness to pay lip service? Applying a neuroscience-based method to WTP for green electricity," Energy Policy, Elsevier, vol. 87(C), pages 562-572.

    More about this item

    Keywords

    D62; Q42; Q48; Q51; Biomass; Green electricity; WTP; Discrete choice experiment; China;
    All these keywords.

    JEL classification:

    • D62 - Microeconomics - - Welfare Economics - - - Externalities
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:95:y:2018:i:c:p:242-253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.